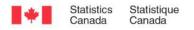


A test of sample matching using a pseudo-web sample

Telling Canada's story in numbers

Golshid Chatrchi and Jack Gambino

INPS Conference, March 16, 2017

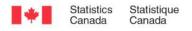


Outline

- Introduction
- Sample matching
- Pseudo-web sample
- Simulation results
- Carrot project: an experiment

Introduction

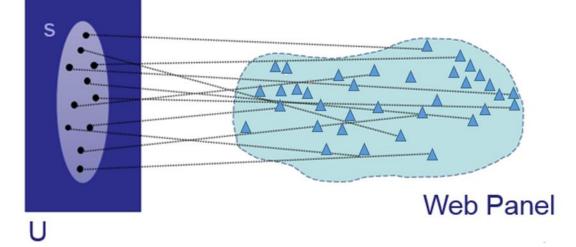
- With increasing levels of nonresponse in household surveys, there is renewed interest in alternatives to the traditional way of conducting surveys.
- Can we use non-probability samples in a probabilistic way? How about the self selection bias?



• Bethlehem (2014)

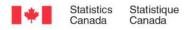
"Due to (high) nonresponse, probability sampling surveys more and more resemble self-selection surveys."

• Rivers (2007)


"There is no logical difference between the type of modeling assumptions needed for nonresponse adjustments and those needed for self-selected samples."

Sample Matching (SM)

 Rivers (2007) proposed the application of Sample Matching.

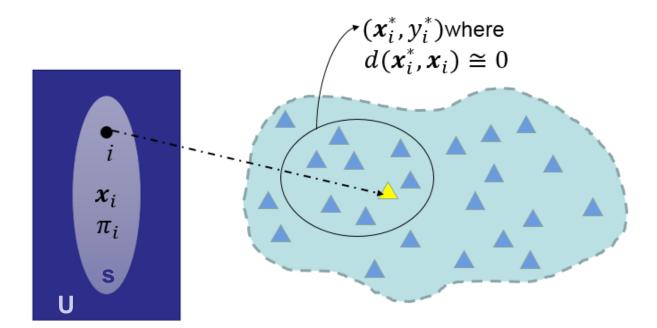

• The variable of interest is not measured directly from *s*.

SM- population of interest

- Let *U* be a population of size N.
- A probability sample s of size n is drawn using a sample design p(s).
- Let π_i be the probability of selection of unit $i \in U$.
- Variable of interest is y.
- Let x_i be the auxiliary variables in the entire population U or for the sample s.

SM- panel

- Let n^* be the size of panel.
- Let $x_1^*, \dots, x_{n^*}^*$ be the auxiliary variables in the panel.
- Let $y_1^*, \dots, y_{n^*}^*$ be the values of the measurements in the panel.
- Let z_i be an indicator of responding to the webpanel survey.
- We assume that $z_i = 1, i = 1, ..., n^*$.

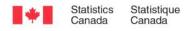

SM- mechanism

- Let d(a,b) be a measure of distance between a and b.
- For each unit *i* in sample *s*, we find a set of pairs (y_i^*, x_i^*) on the panel where $d(x_i, x_i^*)$ is small.
- We select one unit at random from the set and substitute y_i with y^{*}_i.

SM- mechanism

• Estimator of total:
$$\hat{T} = \sum_{i \in s} \frac{y_i^*}{\pi_i}$$

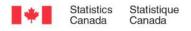
13/03/2017


SM- assumptions

There are three main assumptions in Rivers' paper:

- 1. "iid" data generating process (y_i, x_i, z_i)
- 2. The panel covers all relevant portions of the population U.
- **3.** Ignorable selection

$$F_{Y|X}(y|\mathbf{x}) = F_{Y^*|X^*}(y|\mathbf{x}) \ \forall \mathbf{x}, y$$


The conditional distribution of Y on **X** in the population is identical to that in the panel.

Pseudo-web sample

- Two different household surveys are used to simulate the SM methodology:
 - 2011 National Household Survey (NHS)
 - 2011 Canadian Labour Force Survey (LFS)
- NHS respondents are considered as the population of the study. A probability sample s is selected from the NHS.
- LFS respondents are treated as a pseudo-web sample.

National Household Survey (NHS)

- Statistics Canada conducted the NHS in May 2011 as a replacement for the long census questionnaire.
- The survey was designed to collect social and economic data about the Canadian population.
- NHS respondents~ 6.7 million persons ("population size")

Labour Force Survey (LFS)

- The LFS is a household survey carried out monthly by Statistics Canada.
- The goal of the survey is to provide information on major labour market trends such as unemployment rates.
- May 2011 LFS respondents ~127,000 persons ("Panel size")

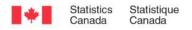
Why NHS and LFS?

- Demographic information from both surveys can be used as auxiliary information.
- NHS is large enough to be considered as our population.
- Both surveys were conducted in May 2011.
- Both surveys collect information on the labour force status and we can evaluate the method using NHS data.

Variables

Variables of interest

1- employed


2- unemployed

3- not in Labour force

6- not applicable (less than 15 years old)

• Matching variables (x_i, x_i^*)

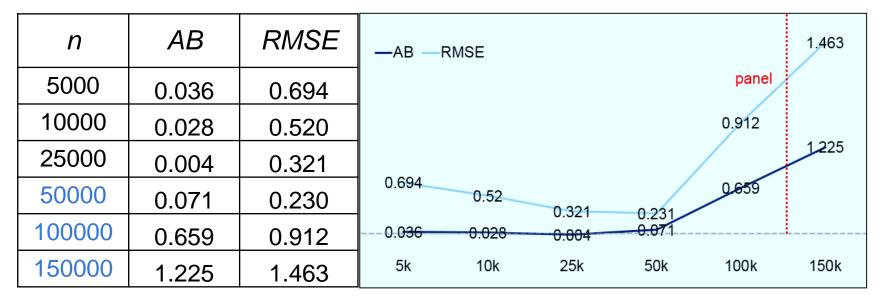
geographical variables, sex, age, education

- Random sample from NHS
- Sample size : 5000, 10000, 25000
- R=1000 simulated samples
- Matching variables:
- Age/sex/province
- Age/sex/education
- Variable of interest: respondent was employed during the reference week

$$y = \begin{vmatrix} 1 & \text{if respondent was employed} \\ 0 & \text{otherwise} \end{vmatrix}$$

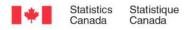
- Two performance measures are considered:
- Absolute bias (AB)

$$AB = \left| \left(\frac{1}{R} \sum_{r=1}^{R} \hat{\theta}^{(r)} \right) - \theta \right|$$


• Root mean square error (RMSE)

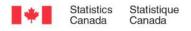
$$RMSE = \sqrt{\frac{1}{R}\sum_{r=1}^{R}(\hat{\theta}^{(r)} - \theta)^2}$$

- Matching variable: province*age*sex
- R=1000 simulated samples
- SRS



- Matching variable: age*sex*level of education
- R=1000 simulated samples
- SRS

n	AB	RMSE
5000	1.002	1.197
10000	0.951	1.313
25000	0.676	0.730



- Matching variable: province*age*sex
- R=1000 simulated samples
- Stratified sampling with power allocation(q=0.5)

$$n_h = n \frac{M_h^q}{\sum_{h=1}^L M_h^q}$$

• *M_h* is total number of persons with employment income

n	AB	RMSE
5000	0.335	0.640
10000	0.303	0.530
25000	0.021	0.327

Lessons learned

- Sample size
- Matching variables
- Sampling mechanism
- Rivers (2007)
- "Sample matching is nearly unbiased if the panel is five times the size of the target sample."
- "The plausibility of this assumption depends largely on the extent and relevance of the matching variables."
- *"Matching from a sufficiently large and diverse panel yields results similar to a SRS."*

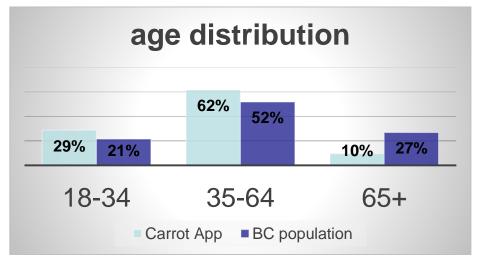
Limitations of the method

- Survey data don't have the same characteristics as the panel data
 - self-selected
 - coverage
- Variable of interest (LFS) is a complex derived variable.
 - Imputation impact

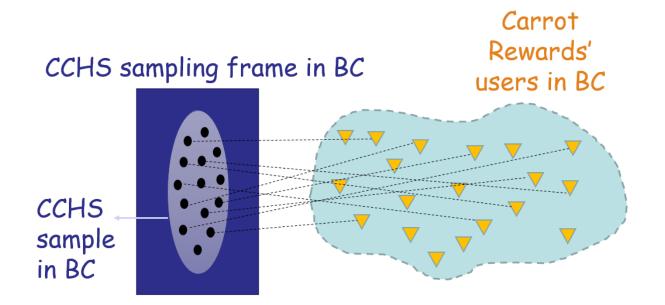
- Carrot Rewards app*
 - incentive-based digital platform
 - originally, a wellness app for making healthy choices
- Register using basic demographic information
- Register rewards card (gas card, movie card, AEROPLAN miles)
- Receive mini surveys
- Complete tasks and collect reward points

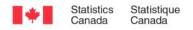
* non-governmental application developed by Social Change Rewards (www.carrotinsights.com)

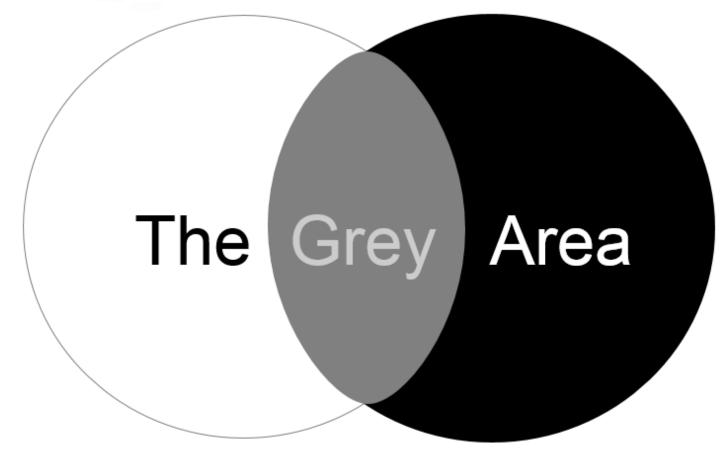
Canada



- Three mini surveys were tested using content from the Canadian Community Health Survey (CCHS).
- Survey #1: Demographics + Alcohol consumption
- Survey #2: Exposure to second hand smoke
- Survey #3: Neighbourhood environment
- Surveys #2 and #3 were only sent to respondents of the first survey.


- Survey #1 was sent to around 41K users Response rate: 28%
- Survey #2 and #3 was sent to around 11.5K users Response rate: 65%




• **Goal**: compare CCHS estimates to Carrot sample matched estimates on the same variables.

Thank you

Merci

For more information please contact: Pour plus d'information, veuillez contacter:

Golshid Chatrchi <u>Golshid.Chatrchi@canada.ca</u> Jack Gambino Jack.Gambino@canada.ca