New evidence on response styles time stability in online surveys: use of IRTree models

Marek Muszyński Tomasz Żółtak Artur Pokropek Institute of Philosophy and Sociology, Polish Academy of Sciences

Response styles

Response styles (RS):

 Systematic tendency to respond regardless of trait level and items' content

(Cronbach, 1946; Khorramdel & von Davier, 2014; Paulhus, 1991)

Response styles

Response styles

• many "styles" known (Van Vaerenbergh & Thomas, 2013):

Туре	Definition	Respondent's use of a 7-point rating scale ^a
ARS	Tendency to agree with items regardless of content, only the highest response categories are used	0000
DARS	Tendency to disagree with items regardless of content, only the lowest response categories are used	●●●○○○○
MRS	Tendency to use the middle re- sponse category of a rating scale, regardless of content	000000
ERS	Tendency to use the highest and lowest response categories of a rating scale	●00000●
MLRS	Tendency to avoid the highest and lowest response categories of a rating scale. This is the complement of ERS	$\bigcirc \bullet \bullet \bullet \bullet \bullet \bigcirc$

Consequences of response styles

- Inflated or deflated scores (Park & Wu, 2019; Paulhus, 1991)
- Spurious correlations (Jeon & DeBoeck, 2019; Park & Wu, 2019)
- Reliability and dimensionality distortion, validity threat (Adams et al., 2019; Baumgartner & Steenkamp, 2001; De Jong et al., 2008; Khorramdel & von Davier, 2014; van Rosmalen et al., 2010)
- Threat for cross-group comparisons (He & van de Vijver, 2015; Khorramdel et al., 2017; Ulitzsch et al., 2023)
- Distortion of growth/time change estimates (Ames & Leventhal, 2021; Soland & Kuhfeld, 2021)

Consequences of response styles

- Inflated or deflated scores (Park & Wu, 2019; Paulhus, 1991)
- Spurious correlations (Jeon & DeBoeck, 2019; Park & Wu, 2019)
- Reliability and dimensionality distortion, validity threat (Adams et al., 2019; Baumgartner & Steenkamp, 2001; De Jong et al., 2008; Khorramdel & von Davier, 2014; van Rosmalen et al., 2010)
- Threat for cross-group comparisons (He & van de Vijver, 2015; Khorramdel et al., 2017; Ulitzsch et al., 2023)
- Distortion of growth/time change estimates (Ames & Leventhal, 2021; Soland & Kuhfeld, 2021)

Response styles timestability

- Why time-stability is an important topic?
- Trait vs. State discussion

• Insight to RS:

- interpretations
- mechanisms
- covariates
- prevention techniques
- Enables to measure true change of the trait of interest

(Bachman & O'Malley, 1983; Billiet & Davidov, 2008)

State-ofthe-art

- Response styles:
- content-independent
- trait-like
- stable across measurement occasions over short and long periods of time
- stable across measurement instruments (scales) within measurement occasion

(Austin et al., 2006; Jin & Wang, 2014; Weijters et al., 2010; Wetzel et al., 2013)

Response styles timestability – how to measure it?

Older ways have a number of shortcomings:

- confound trait and style (Bolt & Newton, 2011)
- need additional items (Weijters et al., 2010)
- do not offer item-level analysis (Wetzel et al., 2016)
- do not offer separate latent trait for RS (e.g. mixture IRT, random threshold) (Khorramdel et al., 2019; Ulitzsch et al., 2022)
- ignores ordinal nature of rating scales (e.g. MNRM)

(review: Ames, 2022)

But...

The research lacuna

- very few time-stability research that uses new measurement methods (e.g. IRTrees!) (Ames, 2022)
- cross-scale time-stability is scarcely researched at all (with the use of IRTrees or MNRMs or without) (Ames & Leventhal, 2021a, 2021b; Soland & Kuhfeld, 2021)
- cross-format time-stability also scarcely researched (Ames, 2022)
- time-stability covariates rarely investigated (Ames & Myers, 2020)

Research aims

- Estimate RS time stability with IRTrees models
- Investigate cross-scale RS time stability
- Research potential covariates of RS time stability

IRTrees

IRTree models

- (attempt to) represent multi-stage decision processes
- with a series of dichotomous steps with IRT-modelled probability attached to each of the steps (nodes)
- capable of modeling many traits in one model (e.g. ERS, MRS, TOI)
- flexible with regard to item format (4-, 5, 7-point rating scale, etc.)

(Bockenholt, 2012, 2017; Khorramdel & von Davier, 2014; Plieninger, 2021 Plieninger & Meiser, 2014; Thissen-Roe & Thissen, 2013)

Method

Participants	Scales (all 4- point agreement type)	Number of items		
N = 401	Vaccination attitudes	10		
Web survey	Reading competence	3		
Opt-in panel	Reading difficulty	3		
Quota-based sample	Reading joy	11		

Method

• Measurement occasions: two, separated by 2 weeks

Model specification

- item parameters invariant across time points (Ames & Leventhal, 2021)
- mean and variance fixed at t=1, estimated freely at t>1
- informative priors for item parameters, uninformed priors for trait distribution
- General ERS vs Scale-Specific ERS

Model 1: General ERS

Data overview

Covariates:

- Gender
- Survey experience (number of surveys participated in last year, date of joining the panel)
- Age (below 30, 31-39, over 39)
- Education (self-report, higher vs. non-higher)
- Condition neutral vs. distraction

Results

- Scale-specific ERS model better fitted the data*
- High inter-measurement ERS correlation ca. 0.77
- High inter-scale ERS correlation - |0.44 – 0.83|
- Negligible changes in trait and ERS means
- Slight increase of trait and ERS variances

Variable	ERS-controlled (IRTree)	No control (SGRM)	
Vaccination – mean change	0	0	
Vaccination – variance retest	1.00*	0.99*	
Vaccination – variance of change	0.25*	0.34*	
Reading competence – mean change	0	0	
Reading competence – variance retest	1.16*	1.11*	
Reading competence – variance of change	0.21*	0.28*	
Reading difficulty – mean change	0	0	
Reading difficulty – variance retest	1.26*	1.22*	
Reading difficulty – variance of change	0.40*	0.38*	
Reading joy - mean	0.23*	0.15*	
Reading joy – variance retest	1.30*	1.16*	
Reading joy – variance of change	0.60*	0.56*	

ERS	Condition	Female	Education	Age	Intervie ws	Months in panel
ERS_V	-	-	0.24*	-	-	-
ERS_RC	-	0.23*	0.23*	-	-	-
ERS_RD	- 0.35*	0.32*	-0.23*	-	-	-
ERS_RJOY	-	-	0.38*	-	-	-
ERS_V change	- 0.44*	-	-	-	-	-
ERS_RC change	-	-	-	-	-	-
ERS_RD change	-	-	-	- 0.35 *	-	-
ERS_RJOY change	-0.53*	-	-	-	-	-

Discussion

- Hard to disentangle ERS and trait of interest – RS is assumed symmetric (which probably is not the case)
- Need for new models for skewed trait distributions?
- Covariates have only a limited relation with ERS
- Similar pattern of relations to traits of interest
- Negligible effect of RS control on latent change indicators.

Limitations

- Small numer of participants (only ca. 400 is it enough?) – simulation study says YES
- Short period of time between measurement occasions (only 2 weeks)
- Checked only for 4-point rating scale
- Only ERS modelled

Future directions

- More simulation studies to understand LIRTrees models better
- More studies on covariates (format, time gap, scale content, scale length, RS type, participant characteristics)
- Investigate consequences for ignoring RS in trait change studies (mean, variance, testretest)
- Research individual trajectories (trait and RS shifts)

Thank you !

rstyles.ifispan.edu.pl

<u>www.researchgate.net/lab/Artur-</u> <u>Pokropek-Lab</u>

marek.muszynski@ifispan.edu.pl

