Optimal Stratification in Bayesian Adaptive Survey Designs

Yongchao Ma¹ Nino Mushkudiani² Barry Schouten^{1,2}

¹Utrecht University ²Statistics Netherlands

European Survey Research Association 2021

Optimal Stratification in BASD

Outline

Introduction

- Stratification in Adaptive Survey Design
- Research Question

2 Methodology

3 A Case Study

- Dutch Health Survey
- Stratification
- Optimization
- Determine Optimal Stratification

4 Discussion

• Why?

- Different data collection strategies are effective for different groups of people
- Assigning the right strategies to the right people
- Identify groups of people with different preferences for being approached
- How?
 - Prior to the start of data collection, stratification is based on
 - historic survey data
 - fully observed auxiliary data (eg. population register)
 - Balance the responses over strata defined by auxiliary variables (eg. age groups)
 - Assumption: selected auxiliary variables are related to the target survey variables

• How to stratify the target population into subgroups effectively and efficiently?

• Stratify the target population directly on the target survey variables

• How?

- Predict target survey variables by fully observed auxiliary data
- Clustering by Classification and Regression Tree (CART)
- Strata are directly related to target survey variables.
- Balancing the responses over these strata directly improves the survey estimates

- Data collected from April 2017 to March 2018 selected
- Sample size: 13197
- Strategies
 - Web only
 - Web + short F2F follow-up (at most 3 visits)
 - Web + extended F2F follow-up (more than 3 visits)

Dutch Health Survey

- Target survey variables (dichotomized) Y
 - Self-perceived health
 - Smoking
 - Obesity
- Auxiliary variables X
 - Age
 - Sex
 - Income level
 - Migration status
 - Marital status
 - Urbanisation level of the residential neighbourhood
 - Household type
 - Education level
 - Whether they received rent benefit

- Response \hat{Y}
- ResponseX
- CostX

Response to Web $\sim \hat{Y}$

Response to Web $\sim X$

Number of visits $\sim X$

			•
Stratum	Smoking probabilities	Health probabilities	Obesity probabilities
1 (5841)	≥ 0.21		
2 (720)	< 0.21	< 0.56	
3 (1370)	< 0.21	≥ 0.86	< 0.06
4 (626)	≥ 0.13 & < 0.21	≥ 0.86	≥ 0.06
5 (371)	$\geq 0.08 \; \& < 0.13$	≥ 0.86	≥ 0.06
6 (188)	< 0.08	≥ 0.86	≥ 0.06
7 (1240)	≥ 0.16 & < 0.21	≥ 0.56 & < 0.86	
8 (825)	< 0.16	$\geq 0.56 \; \& < 0.63$	
9 (2016)	< 0.16	≥ 0.63 & < 0.86	

Stratification based on the Predicted Probabilities of Success of Survey Variables.

Note: Stratum size in parentheses. Total sample size is 13197.

- Minimize the coefficient of variation (CV) of response propensities subject to the constraints on response rate (RR) and cost per respondent (B)
- Set the response rate at 50% and the cost per respondent at ${\in}42$
- $3^9 = 19683$ possible solutions for 0/1 allocation probabilities
- Evaluated the posteriors of each solution to search for the optimal solution

- Same steps for
 - estimating response propensities and costs
 - optimizing from the possible solutions

- Select top 5 optimal solutions based on each stratification
- Evaluate their coefficient of variation (CV) of individual response propensities with respect to predicted survey variables
 - Solution that incurs the minimum CV is the optimal solution
 - Corresponding stratification is subsequently the optimal stratification

Determine Optimal Stratification

• Winner: Response \hat{Y}

- When the predictive power of X is very low...
- Strategy-dependent measurement error of the survey variables
- Compare all the stratification methods in one go