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“ ‘Interviewer falsification’ means the intentional departure from the designed interviewer guidelines or 

instructions, unreported by the interviewer, which could result in the contamination of data.” 

American Association for Public Opinion Research (AAPOR) 2003: 1

• Fabrication of complete interviews

• Fabrication of single items

• Fabrication of few interviews

• Miscoding of respondents’ answers

• Deviations from selection rules

• …

THE PROBLEM WITH 

INTERVIEWER FALSIFICATION
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(AAPOR 2003; DeMatteis et al. 2020) 
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Differences in  

… detection probability

… influence on data quality

… verification costs 
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How can we improve this tradeoff?
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Detection Tradeoff
Detection Probability &

Data Quality

Cost of 

Control & Verification



CAN WE USE MACHINE LEARNING TO DETECT 

INTERVIEWER FALSIFICATION?
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PREVIOUS LITERATURE ON 

INTERVIEWER FALSIFICATION
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Machine Learning and Interviewer Falsification

• Unsupervised Machine Learning

– Data Mining and Outlier Detection (e.g., Weinauer 2019; Murphy et al. 2005)

– Cluster Algorithms (e.g., Bergmann, Schuller, and Malter 2019; Haas and Winker 2014; Menold et al. 2013; Bredl, 

Winker, and Kötschau 2012)

– Principal Component Analysis (e.g., Blasius and Thiessen 2013, 2012)

• Supervised Machine Learning

– Regression Techniques (Li et al. 2009)

– Tree-based Methods (Birnbaum et al. 2013)
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Machine Learning and Interviewer Falsification

• Unsupervised Machine Learning

– Data Mining and Outlier Detection (e.g., Weinauer 2019; Murphy et al. 2005)

– Cluster Algorithms (e.g., Bergmann, Schuller, and Malter 2019; Haas and Winker 2014; Menold et al. 2013; Bredl, 

Winker, and Kötschau 2012)

– Principal Component Analysis (e.g., Blasius and Thiessen 2013, 2012)

• Supervised Machine Learning

– Regression Techniques (Li et al. 2009)

– Tree-based Methods (Birnbaum et al. 2013)

Lack of suitable data
Lack of literature 
using supervised 
machine learning

Lack of evaluation 
of different 

supervised algorithms
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STUDIES DEALING WITH 

INTERVIEWER FALSIFICATION

Real-World Data

Seldom available

Few falsifications

Uncertain falsification status

High external validity

Real conditions and motivations

Experimental Data

High intern validity

Balanced falsification ratio

Certain falsification status

Low external validity

Selective Groups (mostly Students)
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Combine real-world data with experimental data 
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DATA

IAB-BAMF-SOEP Survey of Refugees in 

Germany

 Annual longitudinal household panel (starting 

2016)

 Target population: asylum-seekers and adult 

household members

 Mode: computer-assisted personal 

interviewing (CAPI)

 Interviewer: 98 trained interviewers

 Falsifications: 351 (7.3%) complete 

falsifications out of 4,816 interviews 

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 8

(Brücker et al. 2016; Brücker et al. 2017; IAB 2017; Kosyakova et al. 2019; Haas and Winker 2016, 2014; Storfinger and Winker 2013; Menold et al. 2013) 

Experimental Data

 2011 conducted cross-sectional experiment at 

the University of Giessen, Germany

 Respondents: students from the University of 

Giessen 

 Mode: paper-and-pencil interviews (PAPI) 

which were tape recorded

 Interviewers: 78 trained students

 Falsifications: 710 (50 %) complete 

falsifications out of 1,420 interviews
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APPROACH

1. Feature selection: 

Identification of appropriate features available for both datasets  Falsification Indicators

2. Dataset shifting: 

Address possible problem of dataset shifting due to the different data sources

3. Algorithm selection:

Identification of appropriate algorithms applicable in the context of binary classification problems

4. Performance evaluation:

Training, testing and comparison of different model results

5. Tuning models:

Improving model performance

6. Final evaluation

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 9
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FEATURE SELECTION

Aim: Identify comparable features between the different datasets,

which allow a discrimination between falsified and real interviews

Falsification indicators …

… are derived from rational (answering) behaviors of falsifiers

… allow measurement of systematic differences between real and falsified data

… are not easily manipulated by falsifiers

… are comparable between different datasets 

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 10

(Hood and Bushery 1997; AAPOR 2003; Bredl et al. 2012; Menold et al. 2013) 
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FALSIFICATION INDICATORS

 Extreme responses: Lower share of extreme responses on rating scales for falsifiers

 Middle responses: Higher share of middle responses on rating scales for falsifiers

 Non-Differentiation: Lower standard deviation across item scales for falsifiers

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 11

(Schäfer et al. 2005; Bredl et al. 2012) 
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FALSIFICATION INDICATORS

Indicator Abbreviation Description

Acquiescent responding ACQ Share of positive connotation (“Agree/Strongly Agree”) independent of content

Benford’s Law BFL Decreasing distribution of leading digit for numeric quantities

Interview duration DUR Duration of completed interviews

Extreme responses ERS Share of extreme responses to rating scales

Item nonresponse INR Item nonresponse rate within an interviewer’s workload of closed-ended questions

Non-Differentiation ND Standard deviation within an item scale

Middle category responses MRS Share of middle responses to rating scales

Primacy effects PRIM Share of choosing the first two categories in non-ordered answer option lists

Recency effects RECE Share of choosing the last two categories in non-ordered answer option lists

Rounding ROUND Share of rounding numbers in numerical open-ended questions

Semi-Open responses SOR Share of responses to “other” in semi-open-ended question

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 12

(Reuband 1990; Hood and Bushery 1997; Schäfer et al. 2005; Bredl et al. 2012; Menold et al. 2013) 
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ALGORITHMS – REGRESSION MODELS

 Logistic Regression

Models the probability of the binary output (falsification status) by 

fitting a linear combination of input variables (features) into a 

logistic function

 Boosted Logistic Regression

Ensemble of logistic regression models, sequentially applied to 

reweight the training data and prediction through weighted 

majority vote

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 13

(Hastie et al. 2009; Friedman et al. 2000) 
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ALGORITHMS – TREE-BASE METHODS

 Simple Decision Tree

Processes input (features) by making a series of logical decisions 

comprised in different branches leading to the output (falsification 

status) according to the combination of decisions/splits  

 Random Forest

Ensemble of multiple Decision Trees with random feature 

selection for each Decision Tree

 XGBoost (Tree Boosting)

Ensemble of multiple Decision Trees, sequentially applied to 

perform iterative optimization

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 14

(Lantz 2013; Hastie et al. 2009; Friedman et al. 2000) 
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ALGORITHMS – DEEP LEARNING

 Neural Networks

Models connection between input (features) and output 

(falsification status) by weighting the input according to an 

activation function and processing the weighted information 

through (multiple) nodes and layers

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 15

(Lantz 2013; Hastie et al. 2009) 



PRELIMINARY RESULTS
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FEATURE SELECTION

Feature importance according to Boruta-Algorithm

Boruta-Algorithm = 

wrapper algorithm built on Random Forest

• Iterations of different feature combinations

• Defines feature importance for the model 

accuracy of Random Forest

• Adds randomness, by creating mixed copies 

of features

Advantage:

Captures all circumstances in which a feature is 

important 

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 17
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DATASET SHIFTING
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DATASET SHIFTING
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COMPARISON OF ALGORITHMS

Training Data: ROC (Receiver Operating Characteristic) curve comparing different algorithms

 ROC curve visualizes tradeoff between 

sensitivity and specificity

Sensitivity: 

Proportion of real interviews, correctly 

classified as real interviews

Specificity:

Proportion of falsifications, correctly 

classified as falsifications

AUC:

Area under the ROC curve

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 20
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COMPARISON OF ALGORITHMS

Test Data: ROC (Receiver Operating Characteristic) curve comparing different algorithms

 Best Performance:

Random Forest

 Possible problems:

1.Unbalanced data

2.Overfitting

3.Dataset shifting

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 21
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• Still many problems to address:

– Features  can we increase the number of features?

– Data shifting  which form data shifting is important for us?

– Algorithms  which algorithms should we add?

– Tuning  how can we tune the models without running into overfitting?

• Further starting points for research:

– Falsification forms  can we simulate further falsifications forms (e.g. partial falsifications)?

– Falsification share  what happens if we change the share of falsifications?

OUTLOOK AND DISCUSSION

Evaluating Machine Learning Algorithms to Detect Interviewer Falsification 22
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APPENDIX | FALSIFICATION INDICATORS

Mean

Experimental Data Real-World Data

Falsified Real Diff. Group 

Mean

Falsified Real Diff. Group 

Mean

ACQ 0.15 -0.15 0.30 (0.000) 0.47 -0.04 0.51 (0.000)

BFL -0.04 0.04 -0.08 (0.150) 0.19 -0.02 0.20 (0.000)

DUR 0.07 -0.07 0.15 (0.004) 0.66 -0.05 0.71 (0.000)

ERS 0.13 -0.13 0.26 (0.000) 0.52 -0.04 0.56 (0.000)

INR -0.14 0.14 -0.28 (0.000) 0.49 -0.04 0.53 (0.000)

MRS 0.08 -0.08 0.15 (0.004) 0.21 -0.02 0.22 (0.000)

ND 0.17 -0.17 0.34 (0.000) 0.53 -0.04 0.57 (0.000)

PRIM -0.06 0.06 -0.11 (0.039) 0.77 -0.06 0.83 (0.000)

RECE 0.02 -0.02 0.03 (0.544) 0.63 -0.05 0.68 (0.000)

ROUND 0.08 0.08 -0.17 (0.002) 0.60 -0.05 0.64 (0.000)

SOR 0.12 -0.12 0.24 (0.000) 0.16 -0.01 0.17 (0.002)
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Differences between real data and falsified data, separate for experimental data and real-world data


