Assessing the relationship between survey data and Twitter data as measures of public opinion - A methodological pilot study

Johannes Breuer 1,2 Felix Bensmann 1
Stefan Dietze 1,3,4 Ran Yu 5 Katarina Boland 1,3

1GESIS – Leibniz Institute for the Social Sciences
2Center for Advanced Internet Studies
3Heinrich Heine University Düsseldorf
4L3S Research Center Hannover
5University of Bonn

ESRA 2021
16 July 2021
Background
Social Media Data & Survey Data

Several studies have looked at the relationship between data from surveys and data from Twitter as measures of public opinion on different topics, such as:

- Presidential approval ratings (Pasek, McClain, Newport, & Marken, 2020)
- The economy (Conrad et al., 2019)
- Happiness & life satisfaction (Kramer, 2010)
- Consumer confidence (O’Connor, Balasubramanyan, Routledge, & Smith, 2010)

While most studies find associations between survey and Twitter data, the type and strength of the association differ.

Notably, previous research typically involved a number of manual steps in the data collection and processing pipeline and focused on one particular topic.
Key challenges for our work

- Efficient, objective, and generalizable (automated) solutions for collecting & processing Twitter data
- Avoiding bias (Sen, Flöck, Weller, Weiß, & Wagner, 2021)
 - Selection & representativeness of tweets for the topic and target population
 - Appropriate operationalization/measurements
Research Questions

- **RQ1**: How can we develop an automated and generalizable pipeline for comparing measurements of public opinion from surveys and from Twitter?
- **RQ2**: What is the relationship between measurements of public opinion from surveys and from Twitter?
- **RQ3**: Which factors can affect the relationship between measurements of public opinion from surveys and from Twitter?
Methods
Survey data

- We chose two topics for our study: Attitudes towards 1) immigration and 2) vaccinations against COVID-19
- Two survey data sources: 1) Eurobarometer and 2) COSMO - COVID-19 Snapshot monitoring
- Both surveys are repeated cross-sectional studies
Eurobarometer data

- Data for the UK and Germany
- Time period: 2015 to 2020 (= 9 measurement points per country)
- Survey item: 'Please tell me whether each of the following statements evokes a positive or a negative feeling for you: Immigration of people from outside the EU.'
- Response options: 1 - very positive, 2 - fairly positive, 3 - fairly negative, 4 - very negative
COSMO data

- Data for Germany
- Weekly or biweekly online surveys starting March 2020
- We used data from 23 surveys
- Survey item: 'How would you decide if you had the opportunity to get vaccinated against COVID-19 next week?'
- Response options: From 1 - 'would not get vaccinated in any case' to 7 - 'would get vaccinated in any case'
Twitter data from a long-term Twitter archive underlying *TweetsKB* (Fafalios, Iosifidis, Ntoutsi, & Dietze, 2018)

- Based on continuous capturing of random 1% sample from the Twitter streaming API
- Crawler has been established in 2013 and has collected more than 10 billion tweets until December 2020
- TweetsKB provides semantic annotation, including sentiment using *SentiStrength* (Thelwall, Buckley, Paltoglou, Cai, & Kappas, 2010)
 - Positive [1,5] negative sentiment [-1,-5] integer score for each tweet (with 1 and -1 counting as neutral)
To establish correspondence between Twitter and survey data, we need to ensure that tweets...

1. Address the right topic (immigration or vaccination against COVID-19)
2. Come from an appropriate population (i.e., users in Germany and the UK)

To achieve this, our pipeline for identifying relevant tweets consists of two steps:

- Generating a seedlist of relevant terms
- Determining user location
Seedlist creation

- There are different ways of creating seed lists: e.g., manually through domain experts or semi-automatically using text mining.
- However, these approaches require substantial manual effort and may introduce bias.
- We follow a fully automated approach relying on two steps:
 1. Extracting a list of terms co-occurring with an initial source keyword.
 2. Selecting the most semantically similar terms to the source keyword as resulting seed list.
Seedlist creation

1. Initial source keywords: Immigration & Vaccination (Impfung)
2. Lemmatization & part-of-speech (POS) tagging using SpaCy (Honnibal, Montani, Van Landeghem, & Boyd, 2020) to build dictionary of all proper nouns, nouns, verbs, and adjectives
3. Determine semantic similarity of each term to the initial keyword using pretrained word embeddings from Fasttext (Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018)
4. Select 30 terms from the dictionary with the highest similarity score as the final seedlist
Majority of English-language tweets do not come from the UK
→ Language not sufficient for identifying location
→ To identify UK tweets: neural-network based geo-location tagging technique *DeepGeo* (Lau, Chi, Tran, & Cohn, 2017)

Majority of German-language tweets come from Germany
(and tests by our colleagues showed that *DeepGeo* does not work well for German tweets)

→ Language detection using a majority vote of three language detectors (Lui & Baldwin, 2014) as proxy for user location
Twitter data collection & processing

1. Filtering with source keyword
2. Language/Location filtering
3. Seedlist creation
4. Filtering with seedlist
5. Language/Location filtering
6. Sentiment classification
Further data processing

- Deduplication of tweets (introduced through retweets)
- Rescale survey data to value ranges from -1 to 1 (migration) and from 0 to 1 (vaccination) to reflect the polarity of attitudes as measured by the respective response scales & normalize sentiment scores to intervals of [-1;0] and [0;1]
- Three sentiment time series: Positive, negative, & averaged
- Construct average sentiment at time point \(t_i \) for different time windows with \(N \) preceding days [0, 365] days, weighted by the number of tweets per day \((w) \)

\[
\text{sent}(t_i, N) = \frac{\sum_{j=0}^{N} (\text{sent}(t_{i-j}) \times w_{i-j})}{\sum_{j=0}^{N} w_{i-j}} \quad (1)
\]
Results
Tweet volume: Immigration UK

Tweet Frequency: Immigration Based on Semantic Similarity (UK)
Tweet volume: Immigration German
Tweet volume: COVID-19 vaccinations German

Tweet Frequency: Vaccination Based on Semantic Similarity (DE)

Date

Number of Tweets
0 100 200 300 400 500 600 700 800 900 1000
Aggregate sentiment: Immigration UK

Daily Sentiment Aggregation: Immigration Based on Semantic Similarity (UK)

- Positive Sentiments
- Averaged Sentiments
- Negative Sentiments
Aggregate sentiment: Immigration German
Aggregate sentiment: COVID-19 vaccinations German
Correlations: Immigration UK

Pearson Correlation: Tweet Sentiment and Variables

- Blue line: C00cc WE-αη-τ
- Orange line: C00cc WE-αη-τ-ε
- Green line: C00cc WE-αη-τ-π

Graph showing correlation score over buffer size.
Correlations: Immigration German

Pearson Correlation: Tweet Sentiment and Variables

Correlation score vs Buffer size

- Coocc WE-de-p
- Coocc WE-de-c
- Coocc WE-de-n

0 50 100 150 200 250 300 350

Range:
-0.75 to 1.00

Background
Methods
Results
Discussion & Outlook
References
Correlations: COVID-19 vaccinations German

Pearson Correlation of Twitter Sentiments and Survey Variable at Various Window Sizes
Discussion

- Our pilot study shows that the pipeline we have developed can be applied for different use cases (e.g., topics and countries).
- Making survey and Twitter data comparable requires several preprocessing steps (including aggregation of Twitter data).
- The chosen time window for the aggregation of Twitter data affects the strength of the correlation between survey and Twitter measurements.
- For the aggregation it makes a difference whether the topic is novel and how quickly attitudes change.
Limitations

- **Location detection**
 - Language (Ger) vs. georeferencing (UK)
 - Tweet location vs. user location

- **Twitter users vs. survey respondents**
 - e.g., research from UK and the US has shown that Twitter users tend to be younger, more highly educated, and have higher income compared to the general population (Blank, 2017; Blank & Lutz, 2017; Hargittai, 2015; Sloan, 2017)

- **Signal vs. noise**
 - For example: Diverging positive and negative sentiment for immigration tweets a sign of polarization or a methodological artefact caused by the increase in Twitter’s character limit (from 140 to 280) in 2017?
Next steps

- Evaluation of tweet relevance via crowdsourcing
- Test pipeline for further use cases (topics)
- Systematically test and compare different seedlist generation approaches
- Further refine and extend the pipeline, e.g.:
 - Other/additional indicators for user location
 - Other sentiment tools
 - Stance detection
- Predicting survey responses from Twitter data
Recommendations

- Avoid the introduction of biases in the creation of seedlists
 - Consider, e.g., the use of terms that are relevant only for specific regions or time periods
- Make sure that the Twitter data corresponds to the survey data as much as possible
 - e.g., sentiment for "feelings towards X" vs. tweet volume for issue salience (or potentially also stance detection for specific attitudes and opinions)
- Select aggregation approaches that are suitable for your data (e.g., time intervals between survey waves) and topic (e.g., controversiability, novelty, etc.)
Thank you for your attention!

Contact

E-Mail: johannes.breuer@gesis.org
Twitter: @MattEagle09

