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Social Media Data & Survey Data

Several studies have looked at the relationship between data
from surveys and data from Twitter as measures of public
opinion on different topics, such as...

Presidential approval ratings (Pasek, McClain, Newport, &
Marken, 2020)
The economy (Conrad et al., 2019)
Happiness & life satisfaction (Kramer, 2010)
Consumer confidence (O’Connor, Balasubramanyan,
Routledge, & Smith, 2010)

While most studies find associations between survey and
Twitter data, the type and strength of the association differ

Notably, previous research typically involved a number of
manual steps in the data collection and processing pipeline
and focused on one particular topic
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Key challenges for our work

Efficient, objective, and generalizable (automated) solutions
for collecting & processing Twitter data

Avoiding bias (Sen, Flöck, Weller, Weiß, & Wagner, 2021)

Selection & representativeness of tweets for the topic and
target population
Appropriate operationalization/measurements
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Research Questions

RQ1 : How can we develop an automated and generalizable
pipeline for comparing measurements of public opinion from
surveys and from Twitter?

RQ2 : What is the relationship between measurements of
public opinion from surveys and from Twitter?

RQ3 : Which factors can affect the relationship between
measurements of public opinion from surveys and from
Twitter?
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Survey data

We chose two topics for our study: Attitudes towards
1) immigration and 2) vaccinations against COVID-19

Two survey data sources: 1) Eurobarometer and
2) COSMO - COVID-19 Snapshot monitoring

Both surveys are repeated cross-sectional studies
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Eurobarometer data

Data for the UK and Germany

Time period: 2015 to 2020 (= 9 measurement points per
country)

Survey item: ’Please tell me whether each of the following
statements evokes a positive or a negative feeling for you:
Immigration of people from outside the EU.’

Response options: 1 - very positive, 2 - fairly positive, 3 -
fairly negative, 4 - very negative
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COSMO data

Data for Germany

Weekly or biweekly online surveys starting March 2020

We used data from 23 surveys

Survey item: ’How would you decide if you had the
opportunity to get vaccinated against COVID-19 next week?’

Response options: From 1 - ’would not get vaccinated in any
case’ to 7 - ’would get vaccinated in any case’
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Twitter data

Twitter data from a long-term Twitter archive underlying
TweetsKB (Fafalios, Iosifidis, Ntoutsi, & Dietze, 2018)

Based on continuous capturing of random 1% sample from the
Twitter streaming API
Crawler has been established in 2013 and has collected more
than 10 billion tweets until December 2020
TweetsKB provides semantic annotation, including sentiment
using SentiStrength (Thelwall, Buckley, Paltoglou, Cai, &
Kappas, 2010)

Positive [1,5] negative sentiment [-1,-5] integer score for each
tweet (with 1 and -1 counting as neutral)
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Twitter data pipeline

To establish correspondence between Twitter and survey data,
we need to ensure that tweets...

1 Address the right topic (immigration or vaccination against
COVID-19)

2 Come from an appropriate population (i.e., users in Germany
and the UK)

To achieve this, our pipeline for identifying relevant tweets
consists of two steps:

Generating a seedlist of relevant terms
Determining user location
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Seedlist creation

There are different ways of creating seed lists: e.g., manually
through domain experts or semi-automatically using text
mining

However, these approaches require substantial manual effort
and may introduce bias

We follow a fully automated approach relying on two steps:
1 Extracting a list of terms co-occurring with an initial source

keyword
2 Selecting the most semantically similar terms to the source

keyword as resulting seed list
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Seedlist creation

1 Initial source keywords: Immigration & Vaccination (Impfung)

2 Lemmatization & part-of-speech (POS) tagging using SpaCy
(Honnibal, Montani, Van Landeghem, & Boyd, 2020) to build
dictionary of all proper nouns, nouns, verbs, and adjectives

3 Determine semantic similarity of each term to the initial
keyword using pretrained word embeddings from Fasttext
(Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018)

4 Select 30 terms from the dictionary with the highest similarity
score as the final seedlist
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Language & location detection

Majority of English-language tweets do not come from the UK

→ Language not sufficient for identifying location

→ To identify UK tweets: neural-network based geo-location
tagging technique DeepGeo (Lau, Chi, Tran, & Cohn, 2017)

Majority of German-language tweets come from Germany
(and tests by our colleagues showed that DeepGeo does not
work well for German tweets)

→ Language detection using a majority vote of three language
detectors (Lui & Baldwin, 2014) as proxy for user location
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Twitter data collection & processing
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Further data processing

Deduplication of tweets (introduced through retweets)

Rescale survey data to value ranges from -1 to 1 (migration)
and from 0 to 1 (vaccination) to reflect the polarity of
attitudes as measured by the respective response scales &
normalize sentiment scores to intervals of [-1;0] and [0;1]

Three sentiment time series: Positive, negative, & averaged

Construct average sentiment at time point ti for different time
windows with N preceding days [0, 365] days, weighted by the
number of tweets per day (w)

sent(ti ,N) =

∑N
j=0(sent(ti−j) ∗ wi−j)∑N

j=0 wi−j

(1)
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Tweet volume: Immigration UK
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Tweet volume: Immigration German
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Tweet volume: COVID-19 vaccinations German
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Aggregate sentiment: Immigration UK
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Aggregate sentiment: Immigration German

22 / 35



Background Methods Results Discussion & Outlook References

Aggregate sentiment: COVID-19 vaccinations German
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Correlations: Immigration UK
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Correlations: Immigration German
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Correlations: COVID-19 vaccinations German
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Discussion

Our pilot study shows that the pipeline we have developed can
be applied for different use cases (e.g., topics and countries)

Making survey and Twitter data comparable requires several
preprocessing steps (including aggregation of Twitter data)

The chosen time window for the aggregation of Twitter data
affects the strength of the correlation between survey and
Twitter measurements

For the aggregation it makes a difference whether the topic is
novel and how quickly attitudes change
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Limitations

Location detection

Language (Ger) vs. georeferencing (UK)
Tweet location vs. user location

Twitter users vs. survey respondents

e.g., research from UK and the US has shown that Twitter
users tend to be younger, more highly educated,and have
higher income compared to the general population (Blank,
2017; Blank & Lutz, 2017; Hargittai, 2015; Sloan, 2017)

Signal vs. noise

For example: Diverging positive and negative sentiment for
immigration tweets a sign of polarization or a methodological
artefact caused by the increase in Twitter’s character limit
(from 140 to 280) in 2017?
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Next steps

Evaluation of tweet relevance via crowdsourcing

Test pipeline for further use cases (topics)

Systematically test and compare different seedlist generation
approaches

Further refine and extend the pipeline, e.g.,:

Other/additional indicators for user location
Other sentiment tools
Stance detection

Predicting survey responses from Twitter data
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Recommendations

Avoid the introduction of biases in the creation of seedlists

Consider, e.g., the use of terms that are relevant only for
specific regions or time periods

Make sure that the Twitter data corresponds to the survey
data as much as possible

e.g., sentiment for ”feelings towards X” vs. tweet volume for
issue salience (or potentially also stance detection for specific
attitudes and opinions)

Select aggregation approaches that are suitable for your data
(e.g., time intervals between survey waves) and topic (e.g.,
controversiality, novelty, etc.)
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