# Assessment of Machine Translations of Survey Questions and Response Scales

#### Using metrics to evaluate Machine Translation Quality







Danielly Sorato, UPF Diana Zavala-Rojas, UPF Veronika Keck, GESIS Dorothée Behr, GESIS Brita Dorer, GESIS

European Survey Research Association (ESRA) July 09, 2021





#### **Main objective**



- Machine Translation (MT) evaluation is an important step that should be added prior to Post-editing
  - If a given MT output has bad quality, it may be more troublesome to fix it rather than start a new translation from scratch

# Evaluate the quality of MT outputs in this experiment from a computational perspective



#### **Specific objectives**

- 1. To investigate the quality of machine translated sentences in against the review version of the baseline treatment (fully human pipeline)
  - a. Using sentence similarity metrics
  - **b. Using MT evaluation metrics**

#### However, choosing a reference translation can be problematic

- Scores biased to the vocabulary and phrasing of the reference
- There are cases where a reference translation is not available (e.g. new survey items)

Therefore the MT evaluation paradigm is changing to...

- 2. Evaluating the quality of the machine translated sentences using a Quality Estimation (QE) model
  - No need for reference translation
  - Models trained on MT outputs and their post-editions



### **1a. Similarity metrics**

 Levenshtein distance (lexical): the minimum path of necessary edits to transform string (words, sentences) into another.



Image from Speech and Language Processing (3rd ed. draft) https://web.stanford.edu/~jurafsky/slp3/

 Fuzzy word match taking order into account (syntactic). Percentage of words that are a matched in the two sentences

> What **is a fuzzy match** This **is a fuzzy match**



### **1a. Similarity metrics**

- Sentence level cosine similarity (semantic). Is the cosine between the (numeric) vectors that represent two sentences
  - The vector representation of each word and sentence is learned by a sentence encoder (neural network), that encodes text into high-dimensional vectors
  - Representations learned based on aspects such as the context of words



Image from TensorFlow https://tfhub.dev/google/universal-sentence-encoder/4



## 1a. visualizing similarities in RUS MT vs baseline review



- The high cosine similarity and fuzzy match and low Levenshtein distance values indicate that the <u>MT outputs are very similar to the baseline review</u>
  - Cosine and Fuzzy match: the higher the better
  - Levenshtein distance: the lower the better



## 1a. visualizing similarities in GER MT vs baseline review



Again, overall the <u>MT outputs are very similar to the baseline review</u>

Results slightly better than the Russian segments



#### **1b. MT evaluation metrics**

- Bilingual Evaluation Understudy (BLEU): 2-gram weights and NIST smoothing
- METEOR (Metric for Evaluation of Translation with Explicit ORdering)
  - Both range from 0 100%
- METEOR adds new features to BLEU, such as <u>matches</u> based on stems and synonyms
  - Shown to have a <u>higher correlation with human</u> judgments than BLEU for sentence level analysis



Segment 2022

| P:               | 0.897                                 |
|------------------|---------------------------------------|
| R:               | 0.907                                 |
| Frag:            | 0.514                                 |
| Score:           | 0.440                                 |
| lmag<br>http     | ge from<br>s://www.cs.cmu.edu/~alavie |
| /ME <sup>-</sup> | TEOR/examples.html 🦰 🌔                |
|                  |                                       |

## **1b. Interpreting BLEU and METEOR scores**

| BLEU Score | Interpretation                                            |
|------------|-----------------------------------------------------------|
| < 10       | Almost useless                                            |
| 10 - 19    | Hard to get the gist                                      |
| 20 - 29    | The gist is clear, but has significant grammatical errors |
| 30 - 40    | Understandable to good translations                       |
| 40 - 50    | High quality translations                                 |
| 50 - 60    | Very high quality, adequate, and fluent translations      |
| > 60       | Quality often better than human                           |

A 100% match is hard to achieve, even human translations can get around 60%-70% score due to vocabulary and phrasing differences

#### Table from https://cloud.google.com/translate/automl/docs/evaluate



This project is funded from the EU Horizon 2020 Research and Innovation Programme (2014-2020) under Grant Agreement No. 823782

#### **1b. Results: MT evaluation metrics**



 BLEU and METEOR metrics point that MT segments have understandable to good quality, specially when allowing synonym matches (METEOR)

 Cases of really high scores probably refer to answer segments of 1 to 3 words (e.g. 'yes', 'no')



#### **1b. Results: MT evaluation metrics**



- Consistently with the similarity metrics, <u>the MT German segments have</u> <u>higher quality than the Russian ones</u>
- A median higher than 40% even for the most restrictive metric (BLEU) indicates that the MT engine produced quite good translations



## 2. Quality Estimation

- Here we no longer compare the MT segments against the baseline
  review
  - <u>QE models don't need reference translations</u>
- Sentence level Human-mediated Translation Edit Rate (HTER) prediction (the percentage of edits needed to fix the translation)
- Using <u>TransQuest</u>, an open source QE framework based on cross-lingual transformers
  - Data from <u>ACL WMT19 shared task 1 (Quality Estimation)</u>
  - Model trained with sentences in the tech domain
    - A replication of the model used by the authors in the WMT19 shared task, same hyperparameters
  - ENG-RUS: 15,089 training and 1,000 development sentences
  - ENG-GER: 13,442 training and 1,000 development sentences



## 2. HTER score predictions



- The QE models predicted that the MT segments have good quality, overall
  - <u>The low HTER predictions indicate that most MT segments need</u>
    <u>very few edits to become a good quality translation</u>
- Lower HTER in Russian segments may indicate that the models need to be fine tuned for survey domain for more reliable results



#### **Conclusions and Future work**

- Overall the MT engine showed to produce translations sufficiently good for Post-Edition
- The insertion of MT+PE in the TRAPD method could minimize the human-work
  - Given that Quality Estimation is applied to MT segments
- Quality Estimation (QE) of the MT segments using a QE model trained for the survey domain
  - Requires post-edited data for ENG-GER, ENG-RUS



Thank you for your attention!



#### danielly.sorato@upf.edu









This project is funded from the EU Horizon 2020 Research and Innovation Programme (2014-2020) under Grant Agreement No. 823782