The Geography of Nonresponse

Can spatial econometric techniques improve survey weights for nonresponse?

Christoph Zangger^{1,2}

 $^{1}\mathrm{LMU}$ Munich

²University of Zurich

July 23, 2021

Background & Motivation

Figure 1: Nonresponse a national survey in Switzerland, $2018 (N \approx 25'900)$

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

Non-response is geographically clustered

Reason:

Segregation

- Different people end up in different geographical contexts
- (Budget) constraints (Clark and Lisowski, 2017; Schaake, Burgers, and Mulder, 2014)
- Housing preferences (Bruch and Mare, 2006; Ibraimovic and Hess, 2018)
- Discrimination (Ahmed and Hammarstedt, 2008; Auspurg, Hinz, and Schmid, 2017)

Existing research

- GIS for mapping patterns of nonresponse (Hansen et al., 2007)
- Identification of geographic areas with hard to reach segments of the population (Low Response Score Abbott and Compton, 2014; Erdman and Bates, 2017)
- Geocoded census characteristics as aggregated paradata for weighting survey response (Biemer and Peytchev, 2013; Olson, 2013)
- \Rightarrow Why not make use of the spatial dependence more directly?!
- \Rightarrow Idea: Nearby units' response status as a predictor for a particular unit's response status
- \Rightarrow Spatial Econometric models

イロト 不同 トイヨト イヨト ヨー ろんで

Response probabilities

Response probabilities SAR (probit case):

$$\phi_i(\boldsymbol{x}_i) = p\left(\left[(\mathbb{I} - \rho \mathbf{W})^{-1} \boldsymbol{X} \boldsymbol{\beta}\right]_i + \left[(\mathbb{I} - \rho \mathbf{W})^{-1} \boldsymbol{\varepsilon}\right]_i > 0\right)$$

= $\Phi\left\{\left[(\mathbb{I} - \rho \mathbf{W})^{-1} \boldsymbol{X} \boldsymbol{\beta}\right] / \sigma_u\right\},$ (1)

where $u = (\mathbb{I} - \rho \mathbf{W})^{-1} \boldsymbol{\varepsilon}$.

SEM (probit case):

$$\phi_i(\boldsymbol{x}_i) = \Phi\left\{\boldsymbol{X}\boldsymbol{\beta}/\sigma_u\right\}$$
(2)

Inverse probability weights:

$$\omega_i = \frac{1}{\phi_i(\boldsymbol{x}_i)} \tag{3}$$

 \Rightarrow e.g., weighted average: $\bar{y} = (\sum_{i=1}^{n} y_i \omega_i) / \sum_{i=1}^{n} \omega_i$

Christoph Zangger (LMU & UZH)

The Geography of Nonrespons

July	23,	2021	5/2	23
------	-----	------	-----	----

・ロト ・日 ・ モト ・モト ・ モー ・ つへで

How to proceed?

Model estimation

Predict response probabilities with:

- $\bullet ~oX1$ and oX2
- aggregated paradata $u\bar{X}1$ (e.g., share of people with tertiary degree in census districts)
- different models:
 - ► GLM
 - ► SEM
 - ► SAR
 - ► GLMM
 - ▶ SEM with paradata
 - ▶ SAR with paradata

э

Simulation

DGP

$$\begin{aligned} \phi(\mathbf{X}) \sim Bin(1,\pi), \quad \pi &= \frac{\exp(\mathbf{X}\boldsymbol{\beta})}{(1+\exp(\mathbf{X}\boldsymbol{\beta}))}, \text{ where} \\ \mathbf{X} &= \begin{pmatrix} \mathbf{1}^T & uX_1 & oX_1 & oX_2 \end{pmatrix}, \\ & uX_1 \sim (\mathbb{I} - \rho \mathbf{W})^{-1} \times Bin(5, 0.2), \\ & oX_1 \sim (\mathbb{I} - \rho \mathbf{W})^{-1} \times Bin(1, 0.01), \quad oX_2 = Bin(3, 0.4) \\ \boldsymbol{\beta} &= \begin{pmatrix} \boldsymbol{\beta}_0 & 1.7 & -2.5 & -2.5 \end{pmatrix}^T, \boldsymbol{\beta}_0 = \{-1.8, -2.0, -2.2\}, \quad \rho = \{0.4, 0.5, 0.6\} \\ & \quad cov(uX1, oX1) = -0.2 \end{aligned}$$

(4)

Evaluating estimator performance: Outcome measure

Weighted average outcome $\hat{\bar{y}}$

Look at the MSE of $\hat{\bar{y}}$:

$$MSE_{y} = \mathbb{E}\left[\left(\hat{\bar{y}} - \bar{Y}\right)^{2}\right] = \mathbb{E}\left[\left(\hat{\bar{y}} - \mathbb{E}\left[\hat{\bar{y}}\right]\right)^{2}\right] + \left(\mathbb{E}\left[\hat{\bar{y}}\right] - \bar{Y}\right)^{2}$$
(6)

Main Scenarios

- \bullet 3 values of ρ
- 2 different geographic resolutions (25 vs. 100 subgrids)
- 6 different types of models (GLM, SEM, SAR, GLMM, SEM with aggregated characteristic, SAR with aggregated characteristic)
- 1000 observations
- 1000 replications

 $\Rightarrow 3\times 2\times 6\times 1000=36'000$ models (×3 × 3 for different cov matrix and different response prob.)

Robustness

- ✓ Change response rate: 40 vs. 50 vs. 60 percent
- ✓ Change covariance structure among independent variables: off-diagonal elements -0.2 vs. -0.35 vs. -0.5
- ✓ Varying amount of weight-trimming: max. weight 99% vs. 95% vs. 90% quantile
- \bullet ${\pmb{\times}}$ Misspecify weights matrix

What does the «world» look like?

Figure 2: Average uX1 in the artificial world

э

1. Spatial Dependence

Response

Figure 3: Moran's I: Response

The Geography of Nonresponse

July 23, 2021 12 / 23

э

イロト イヨト イヨト イヨト

Outcome

Figure 4: Moran's I: Outcome

The Geography of Nonresponse

July 23, 2021

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

13/23

2. Model Performance

Figure 5: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.4$, cov(uX1, oX1) = -0.2, Pseudo $R^2 \approx 0.25$

Christoph Zangger (LMU & UZH)

The Geography of Nonrespons

July 23, 2021

Figure 6: Moran's I: GLM Residuals

The Geography of Nonresponse

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ □ □ ▷
 July 23, 2021

Residuals of GLMM model

Figure 7: Moran's I: GLMM Residuals

July 23, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

3.1. Weight trimming

Figure 8: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.4$, cov(uX1, oX1) = -0.2, max.weight:99% quantileChristoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202117/23

3.1. Weight trimming

Figure 8: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.4$, cov(uX1, oX1) = -0.2, max.weight:95% quantileChristoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202117/23

3.1. Weight trimming

Figure 8: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.4$, cov(uX1, oX1) = -0.2, max.weight:90% quantileChristoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202117/23

Conclusion

- Nonresponse is often geographically dependent
 - ▶ due to unobserved selection processes ...
 - ▶ ... rather than a contagious behavior
 - ▶ Nevertheless: Treat as if contagious to incorporate others' response status
- Incorporating response of neighboring units increases accuracy of $\hat{\phi}_i$, even in the presence of omitted variable bias
- Especially if large weights are trimmed
- However:
 - ► Advantages only if spatial models pick up residual spatial correlation after accounting for higher level variance
 - ▶ Depends on underlying spatial association, response propensity, and covariance structure

イロト 不同 トイヨト イヨト ヨー ろんで

Open topics

- Misspecified weights matrix
- Association of outcome measure with spatial process
- Real-world benchmark
- Vary power of prediction model

э

Thanks for the attention!

э

Bibliography I

- Abbott, Owen and Garnett Compton (2014). "Counting and estimating hard-to-survey populations in the 2011 census". In: *Hard-to-Survey Populations*. Ed. by Roger Tourangeau et al. Cambridge: Cambridge University Press, pp. 58–81.
- Ahmed, Ali M. and Mats Hammarstedt (2008). "Discrimination in the rental housing market: A field experiment on the Internet". In: *Journal of Urban Economics* 64.2, pp. 362–372.
- Auspurg, Katrin, Thomas Hinz, and Laura Schmid (2017). "Contexts and conditions of ethnic discrimination: Evidence from a field experiment in a German housing market". In: *Journal of Housing Economics* 35.1, pp. 26–36.
- Biemer, P. and A. Peytchev (2013). "Using Geocoded Census Data for Nonresponse Bias Correction: An Assessment". In: *Journal of Survey Statistics and Methodology* 1.1, pp. 24–44. URL:

https://academic.oup.com/jssam/article-lookup/doi/10.1093/jssam/smt003.

Bruch, Elizabeth E. and Robert D. Mare (2006). "Neighborhood Choice and Neighborhood Change". In: *American Journal of Sociology* 112.3, pp. 667–709.

NADA ADA DAGA

Bibliography II

- Clark, William A. V. and William Lisowski (2017). "Decisions to move and decisions to stay: life course events and mobility outcomes". In: *Housing Studies* 32.5, pp. 547-565. URL: https://www.tandfonline.com/doi/full/10.1080/02673037.2016.1210100 (visited on 05/03/2021).
- Erdman, Chandra and Nancy Bates (2017). "The Low Response Score (LRS)". In: *Public Opinion Quarterly* 81.1, pp. 144–156.
- Hansen, Richard A. et al. (2007). "Geographic Information System mapping as a tool to assess nonresponse bias in survey research". In: *Research in Social and Administrative Pharmacy* 3.3, pp. 249–264.
- **I**braimovic, Tatjana and Stephane Hess (2018). "A latent class model of residential choice behaviour and ethnic segregation preferences". In: *Housing Studies* 33.4, pp. 544–564.
- Olson, Kristen (2013). "Paradata for Nonresponse Adjustment". In: The ANNALS of the American Academy of Political and Social Science 645.1. Ed. by Douglas S. Massey and Roger Tourangeau, pp. 142–170.

Bibliography III

 Schaake, Karina, Jack Burgers, and Clara H. Mulder (Apr. 3, 2014). "Ethnicity, Education and Income, and Residential Mobility Between Neighbourhoods". In: *Journal of Ethnic and Migration Studies* 40.4, pp. 512-527. URL: http://www.tandfonline.com/doi/abs/10.1080/1369183X.2013.830500 (visited on 12/29/2015).

イロト イポト イヨト イヨト

Appendix

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

23/23

Idea

Make use of spatial dependence in non-response. Two models to consider:

$$\boldsymbol{Y}^* = \rho \boldsymbol{W} \boldsymbol{Y} + \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$$
(7a)

$$\Leftrightarrow \qquad \mathbf{Y}^* = (\mathbb{I} - \rho \mathbf{W})^{-1} (\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}) \tag{7b}$$

Spatial Lag Model (SAR)

$$\boldsymbol{Y}^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\nu}, \quad \boldsymbol{\nu} = \lambda \boldsymbol{W}\boldsymbol{\nu} + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$$
(8a)

$$\Leftrightarrow \qquad \mathbf{Y}^* = \mathbf{X}\boldsymbol{\beta} + (\mathbb{I} - \gamma \mathbf{W})^{-1}\boldsymbol{\varepsilon}$$
(8b)

Spatial Error Model (SEM)

イロト 不得下 イヨト イヨト

3

What does the «world» look like?

Figure A.1: Example distribution of response in simulated data

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

July 23, 2021

イロト 不得 トイヨト イヨ

23 / 23

3.2. Response rate

Figure A.2: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.4$, cov(uX1, oX1) = -0.2, max. weight: 99% quantile Christoph Zangger (LMU & UZH) The Geography of Nonresponse July 23, 2021 23/23

3.2. Response rate

Figure A.2: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.2, max.weight: 99% quantilecov(uX1, oX1) = -0.2, max.Christoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202123/23

3.2. Response rate

Figure A.2: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.2, max.weight: 99% quantilecov(uX1, oX1) = -0.2, max.Christoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202123/23

3.3. Covariance Structure

Figure A.3: MSE trimmed weighted average outcome $\mathbb{E}[\phi(X)] \approx 0.5$, cov(uX1, oX1) = 0.2, max.weight: 99% quantileImage: Christoph Zangger (LMU & UZH)Christoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202123/23

3.3. Covariance Structure

Figure A.3: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, $cov(u\mathbf{X}1, o\mathbf{X}1) = -0.35$, max. weight: 99% quantile Christoph Zangger (LMU & UZH) The Geography of Nonresponse July 23, 2021 23/23

3.3. Covariance Structure

Figure A.3: MSE trimmed weighted average outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50,max. weight: 99% quantilecov(uX1, oX1) = -0.50Christoph Zangger (LMU & UZH)The Geography of NonresponseJuly 23, 202123/23

Spatial Dependence

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

э

Response

Figure A.4: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = 0.20

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷
 July 23, 2021

23/23

Figure A.5: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.35

July 23, 2021

Figure A.6: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50

ъ

Figure A.7: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = 0.20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure A.8: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.35

July 23, 2021

Figure A.9: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50

July 23, 2021

Residuals of GLM model

Figure A.10: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = 0.20

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 23, 2021

ъ

Residuals of GLM model

Figure A.11: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.35

ъ

Figure A.12: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50

Figure A.13: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = 0.20

Figure A.14: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.35

Figure A.15: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50

Figure A.16: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = 0.20

July 23, 2021

Figure A.17: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.35

July 23, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Response

Figure A.18: Moran's I Response $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.50

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
July 23, 2021

Figure A.19: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = 0.20

July 23, 2021

Figure A.20: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure A.21: Moran's I Outcome $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.50

Residuals of GLM model

Figure A.22: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = 0.20

Residuals of GLM model

Figure A.23: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.35

Residuals of GLM model

Figure A.24: Moran's I GLM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.50

Figure A.25: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = 0.20

Figure A.26: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.35

э.

Figure A.27: Moran's I GLMM Residuals $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.50

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

July 23, 2021

23 / 23

Model performance

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

Figure A.28: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = 0.20

Figure A.29: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.35

Figure A.30: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5$, cov(uX1, oX1) = -0.50

Figure A.31: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = 0.20

Figure A.32: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.35

Christoph Zangger (LMU & UZH)

The Geography of Nonresponse

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
July 23, 2021

Figure A.33: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6$, cov(uX1, oX1) = -0.50

MSE weighted average (with weight trimming)

Figure A.34: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = 0.20, \ max.weight: 99\%$ quantile

Figure A.35: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.35, \ max.weight: 99\%$ quantile

э

23 / 23

Figure A.36: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.50, \ max.weight: 99\%$ quantile

э

23 / 23

Figure A.37: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = 0.20, \ max.weight: 95\%$ quantile

э

23 / 23

イロト イボト イヨト イヨト

Figure A.38: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.35, \ max.weight: 95\%$ quantile

Figure A.39: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.50, \ max.weight: 95\%$ quantile

э

23 / 23

Figure A.40: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = 0.20, \ max.weight: 90\%$ quantile

э

23 / 23

Figure A.41: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.35, \ max.weight: 90\%$ quantile

Figure A.42: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.5, \ cov(uX1, oX1) = -0.50, \ max.weight: 90\%$ quantile

Figure A.43: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = 0.20, \ max.weight: 99\%$ quantile

Figure A.44: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.35, \ max.weight: 99\%$ quantile

э

23 / 23

Figure A.45: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.50, \ max.weight: 99\%$ quantile

Figure A.46: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = 0.20, \ max.weight: 95\%$ quantile

э

23 / 23

Figure A.47: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.35, \ max.weight: 95\%$ quantile

Figure A.48: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.50, \ max.weight: 95\%$ quantile

Figure A.49: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = 0.20, \ max.weight: 90\%$ quantile

э

23 / 23

Figure A.50: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.35, \ max.weight: 90\%$ quantile

3

23 / 23

Figure A.51: Share correctly classified $\mathbb{E}[\phi(\mathbf{X})] \approx 0.6, \ cov(uX1, oX1) = -0.50, \ max.weight: 90\%$ quantile

23 / 23