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INTRODUCTION
Tracking online behaviours using a meter

Definition

Metered data is obtained from a meter willingly installed or configured by a sample of participants
on their devices (PCs, tablets and/or smartphones).

A meter refers to a heterogeneous group of tracking technologies that allow sharing with the
researchers, at least, information about the URLSs of the web pages visited by the
participants.
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on their devices (PCs, tablets and/or smartphones).

A meter refers to a heterogeneous group of tracking technologies that allow sharing with the
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Sample of participants Nomnreactive

Collected from a designed sample Collected by tracking the traces left
of individuals by individuals when interacting with
their devices online.
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— Though commentators frequently warn about “echo chambers ™ little is known about the volume
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What role do ideologically extreme media play in the polar-
ization of society? Here we report results from a randomized
longitudinal field experiment embedded in a nationally represen-
tative online panel survey (N = 1,027) in which participants were
incentivized to change their browser default settings and social
media following patterns, boosting the likelihood of encounter-
ing news with either a left-leaning (HuffPost) or right-leaning
(Fox Mewws) slant during the 2018 US midterm election campaign.
Data on == 19 million web wvisits by respondents indicate that
resulting changes in news consumption persisted for at least 8
whk. Greater exposure to partisan news can cause immediate but
short-lived increases in website wvisits and knowledge of recent
events. After adjusting for multiple comparisons. howewver., wvwe
find little evidence of a direct impact on opinions or affect. Still,
results from later survey wavwves suggest that both treatments pro-
duce a lasting and meaningful decrease in trust in the mainstream
media up to 1 y later. Consistent with the minimal-effects tradi-
tion, direct conseguences of online partisan media are limited,
although our findings raise questions about the possibility of sub-
tle, cumulative dynamics. The combination of experimentation
and computational social science technigues illustrates a powerful
approach for studying the long-term consequences of exposure to
partisan news.

argucs that media primarily rcinforce existing predispositions
(16). At the same time, more recent research strongly implies
Lthat newspapers and especially cable news can change poo-
ple’s voting behavior, especially those without strong partisan
attachments (17-20). We propose an internet-age synthesis that
views pcople’s information cnvironments through the lens of
choice architecture (21): frictions., subtle design features, and
default selttings thal siruclture people’s online experience. Im
this view, small changes (or nudges) could disproportionately
affect information consumption habits that have downstream
CONSCOUCNCes.

To that end, we designed a large, longitudinal online field
experiment that subtly bul naturalistically increased people’™s
exposure to partisan news websites. Our choice of treatment is
ecologically valid: Despite the importance of social media for
agenda-sciting (22) and public cxpression (23), more Aamcricans
continue to say that they get news from news websites or apps
Lthan social media sites (24). The intervention thwus served as a
nudge, boosting the likelihood that subjects encountered news
framed with a partisan slant during their day-to-day web brows-
ing expericence, even if inadvertently. The powerful, sustained
nature of the intervention and our ability to track participants
with survey and behavioral data for months provided the oppor-
tunity to test a range of hypotheses about the long-term impact
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ABSTRACT

The wast majority of empirical research on online communication, or media
use in general, relies on self~-report measures instead of behawvioral data.
Previous research has shown that the accuracy of these self-report mea-
sures can be gquite low, and both over- and underreporting of Mmedia use are
commonplace. This study compares self-reports of Internet use with client
log files from a large household sample. Results show that the accouracy of
self-reported frequency and duration of Internet use is quite low, and that
survey data are only moderately correlated with log file data. Moreowver,
there are systematic patterns of misreporting, especially overreporting,
rather than random dewviations from the log files. Self-reports for specific
content such as social network sites or video platforms seem o be more
accurate and less consistently biased than self-reports of generic frequency
or duration of Intermet use. The article closes by demonstrating the con-
sequences of biased self-reports and discussing possible solutions to the
problerm.
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BACKGROUND

Inferences for finite populations

Metered data can potentially suffer from different types of errors
Shared devices and observation of only part of the activity

* 60% of desktops, 40% of laptops and tablets, and 9% of smartphones shared to some
degree(Revilla et al., 2017)

« 28% with the meter installed in all devices (Pew Research Center, 2020)

Techr)lical issues and reactivity / social desirability bias (Jurgens et al., 2020; Toth and Trifonova,
2020

Substantive conclusions vary depending on what is considered as a visit (3 seconds / 30 seconds /
120 seconds) (Mangold et al., 2021)
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Main goals and contribution

Total Error Framework for metered data

« #1 Summarize the data collection and analysis process for metered data.

« #2 Conceptualize and categorize all errors components (e.g. measurement errors) and
causes (e.g. social desirability) that can occur when using metered data.
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« #2 Conceptualize and categorize all errors components (e.g. measurement errors) and
causes (e.g. social desirability) that can occur when using metered data.

1) Choose the best design options for metered data.

2) Make better informed decisions while planning when and how to
supplement or replace survey data with metered data.

3) Help assess research using metered data.
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Main goals and contribution

Total Error Framework for metered data

« #1 Summarize the data collection and analysis process for metered data.

« #2 Conceptualize and categorize all errors components (e.g. measurement errors) and
causes (e.g. social desirability) that can occur when using metered data.

Bosch, O.J., and M. Revilla (2021). “When survey science met
online tracking: presenting an error framework for metered
data.” RECSM Working Papers Series, 62
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Approach

Adapting instead of reinventing

 Follow approach by Amaya et al (2020) with their Total Error Framework for Big Data

7 error components of the TSE (Groves et al., 2009) as starting point:

« Coverage errors, sampling errors, missing data errors, adjustment errors, specification errors,
measurement errors and processing errors
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Error components and their causes
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RESULTS

Practical recommendations

1. Clearly define what your tracked data is measuring beforehand

Concept: average hours of consumption of online political news

Measure: time recorded of the to online enalaey URLs.

What is considered a visit?
Which online outlets?

Which URLs should be considered political?
What time frame to use to compute an average?
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2. Consider the impact of the chosen technologies on data quality

Apps

Where?
Device

Devices
Not iOS

Continuous?
Yes

Types of data
URLs, Time, Device,
Search terms,
Incognito

Plug-in A

Where?
Browser

Devices
Only PC & MAC

Continuous?
Yes

Types of data
URLs, Time, Device,
Search terms,
Incognito, HTML

Plug-in B
Where?
Browser

Devices
Only PC & MAC

Continuous?
No

Types of data
URLs, Time, Device

Proxy
Where?
Network

Devices
All

Continuous?
Yes

Types of data
URLs, Time, Device
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Consider the impact of the chosen technologies on data quality

Apps

Where?
Device

Devices
Not iOS

Continuous?
Yes

Types of data
URLs, Time, Device,
Search terms,
Incognito
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3. Explore strategies to increase the willingness of individuals to install the meter

in all targets
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What if we fail to properly address recommendations 2 & 3? ‘ Undercoverage

Different levels of undercoverage.
« Device: at least one device used by a participant is not tracked
Browser: at least one web-browser used by a participant is not tracked
In-app: the behaviours happening inside apps are not tracked.

Network: at least one network from which a participant connect to the Internet is not
tracked

Undercoverage can prevent tracking the complete online behavior
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What if we fail to properly address recommendations 2 & 3? ‘ Undercoverage
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What if we fail to properly address recommendations 2 & 3? ‘ Undercoverage
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What if we fail to properly address recommendations 2 & 3? ‘ Undercoverage
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Pew Research Center, 2020. Measuring News Consumption in a Digital Era.
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4. Define strategies to maximise the information available to identify missing data

This is still not very clear at the moment. However... we can combine survey & paradata

During the last 15 days, from how many of these different types of devices have you accessed the Internet
(including using apps like Facebook, Twitter or YouTube)? Please, type the number of devices in the respective

boxes.

Computer with Windows operating system: [NUMERIC OPEN BOX]

Apple computer(s) (MAC): [NUMERIC OPEN BOX]

Smartphone or tablet with Android operating system: [NUMERIC OPEN BOX]
Apple smartphone or tablet (iPhone or iPad): [NUMERIC OPEN BOX]

Others: [NUMERIC OPEN BOX] (IF >0: “Please, specify: [OPEN TEXT BOX]”)

During the last 15 days, have you used any of the following web browsers to access the Internet through a

computer with Windows operating system?

During the last 15 days, have you used any of the following web browsers to access the Internet through an

Internet Explorer Apple computer (MAC)?

Chrome
Firefox Ye: During the last 15 days, have you used any of the following web browsers to access the Internet through

Edge, Opera or others __Internet Explorer | smartphone or tablet with Android operating system?
Safari
Chrome - | Yes
Firefox Chrome
Edge, Opera or others Sénls}}hg browser
Firefox
Edge, Opera or others
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4. Define strategies to maximise the information available to identify missing data

This is still not very clear at the moment. However... we can combine survey & paradata

During the last 15 days, from how many of these different types of devices have you accessed the Internet

(including using apps like Facebook, Twitter or YouTube)? Please, type the number of devices in the respective

Completely covered = high chance
true O.

Partially covered = not clear yet

During the last 15 days, have you used any of the following web browsers to access the Internet through a

computer with Windows operating system?

During the last 15 days, have you used any of the following web browsers to access the Internet through an

Internet Explorer Apple computer (MAC)?
Chrome
Firefox ye: During the last 15 days, have you used any of the following web browsers to access the Internet through

Edge, Opera or others __Internet Explorer | smartphone or tablet with Android operating system?
Safari
Chrome - | Yes No
Firefox Chrome
Edge, Opera or others Sénls}}hg browser
Firefox
Edge, Opera or others |
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4. Define strategies to maximise the information available to identify missing data

This is still not very clear at the moment. However... we can combine survey & paradata

During the last 15 days, have you used another device or browser apart from [INSTER DEVICE(S)] to visit the
following web pages or apps:

Twitter
Facebook
The Guardian
BBC

CNN
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4. Define strategies to maximise the information available to identify missing data

This is still not very clear at the moment. However... we can combine survey & paradata

If the person did not use another device or
N browser to visit the pages/apps of interest -> S it th
uring the » undercoverage does not affect this measure ()] to visit the
following we «
If the person did use another device or browser
- to visit the pages/apps of interest ->
Facebook undercoverage affects this measure

The Guardian
BBC
CNN

Most likely cannot be done for every web page/app of interest




CONCLUSIONS
Limits
One specific definition of data quality.
Lack of previous empirical research.

Tracking technologies are constantly evolving.

Metered data errors are considered independently.

Take-home messages

Using metered data is complex and many decisions must be taken.
Reporting these decisions and conducting robustness checks is necessary.
More empirical research is needed.

This framework can help on all these aspects.

Identifying when a lack of behaviour is real or a product of undercoverage is key
Confounding both phenomena can inflate measurement and missing data errors.
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