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POPULATION AT RISK OF POVERTY
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EXAMPLE: RISK OF POVERTY IN SPAIN

• Data: Survey on Income and Living Conditions, 2006.

• Sample size: n = 34, 389 out of N = 43, 162, 384.

• Parameters: At-risk-of-poverty rates for the 52 provinces by
gender.

• Poverty line z = 0.6×Median(disposable equivalent income):
In 2006, z = 6, 557 euros→ approx. 20 % at risk.

Province Gender nd At risk ĈV Dir. ĈV EB ĈV HB

Soria F 17 6 51.87 16.56 19.82

Tarragona M 129 18 24.44 14.88 12.35

Córdoba F 230 73 13.05 6.24 6.93

Badajoz M 472 175 8.38 3.48 4.24

Barcelona F 1483 191 9.38 6.51 4.52
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EXAMPLE: RISK OF POVERTY IN SPAIN
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POVERTY AND INEQ. INDICATORS

• Edj welfare measure for indiv. j in domain d .

• z = poverty line.

• FGT poverty indicator of order α for domain d :

Fαd =
1

Nd

Nd∑
j=1

(
z − Edj

z

)α

I (Edj < z), α ≥ 0.

• When α = 0⇒ Poverty incidence (or at-risk-of-poverty rate)

• When α = 1⇒ Poverty gap

• Other: Quintile share ratio, Gini coef., Sen index, Theil index,
Generalized entropy, Fuzzy monetary/supplementary index.

X Foster, Greer & Thornbecke (1984), Econom.
X Neri, Ballini & Betti (2005), Stat. in Transition 5
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DIRECT ESTIMATORS

• FGT pov. indicator as a mean:

Fαd =
1

Nd

Nd∑
j=1

Fαdj , Fαdj =

(
z − Edj

z

)α

I (Edj < z)

• HT estimator:

F̂DIR
αd =

1

Nd

∑
j∈sd

wdjFαdj , F̂ S
αd =

1

nd

∑
j∈sd

Fαdj .

• Highly inefficient for areas d with small sample size nd .
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INDIRECT ESTIMATORS

• Indirect estimator: It borrows strength from other areas by
making some kind of homogeneity assumption across areas
(model with common parameters) that uses auxiliary
information.
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NESTED ERROR MODEL

• The distribution of incomes Edj is highly right skewed.

• Select a transformation T () such that the distribution of
ydj = T (Edj) is approximately Normal.

• Assumption: ydj = T (Edj) satisfies the nested error model:

ydj = x′djβ + ud + edj , j = 1, . . . ,Nd , d = 1, . . . ,D

ud
iid∼ N(0, σ2u), edj

iid∼ N(0, σ2e )

X Battese, Harter & Fuller (1988), JASA
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EB METHOD FOR POVERTY ESTIMATION

• Poverty indicators in terms of yd = (yd1, . . . , ydNd
)′:

Fαd =
1

Nd

Nd∑
j=1

{
z − T−1(ydj)

z

}α

I
{
T−1(ydj) < z

}
= hα(yd).

• Partition yd into sample and out-of-sample: yd = (y′ds , y
′
dr )′

• Best predictor: Minimizes the MSE

F̃B
αd = Eydr

[
Fαd |yds ;β, σ2u, σ

2
e

]
.

• Empirical best (EB) predictor: F̂EB
αd = F̃B

αd(β̂, σ̂2u, σ̂
2
e ).

X Molina and Rao (2010), CJS 9



INTRO INDICATORS EB METHOD SIMULATIONS COMPLEX DESIGN APPLICATION INFORMATION SOURCES

POVERTY RATE

• EB much more efficient than ELL and direct estimators.
• ELL even less efficient than direct estimators!

Bias ( %)
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POVERTY GAP

• Same conclusions as for poverty incidence.

Bias ( %)
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PSEUDO EB

• Best predictor for additive area parameters:

F̃B
αd = Eydr [Fαd |yds ] =

1

Nd

∑
j∈sd

Fαdj +
∑
j∈rd

E (Fαdj |yds)︸ ︷︷ ︸
 ,

• Under the nested-error model:

E (Fαdj |yds) = E (Fαdj |ȳd) −→ E (Fαdj |ȳdw ).

• Pseudo Best predictor for additive parameters:

F̃PB
αd =

1

Nd

∑
j∈sd

Fαdj +
∑
j∈rd

E (Fαdj |ȳdw )︸ ︷︷ ︸
 .
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PSEUDO EB

• Including sampling weights reduces the design bias!
• Pseudo EB estimators do not lose much efficiency.
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POVERTY MAPPING IN SPAIN

• Data: Spanish Survey on Income and Living Conditions
(EU-SILC) of 2006.

• Target: Calculate EB and HB estimates of poverty incidences
and gaps for Spanish provinces by gender.

• Areas: D = 52 provinces for each gender. We fit a separate
model for each gender.

• Transformation: We consider the nested-error model for the
log-equivalized disposable income:
ydj = T (Edj) = log(Edj + k).

• Explanatory variables: indicators of 5 age groups, of having
Spanish nationality, of 3 education levels and of labor force
status (unemployed, employed or inactive).
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POVERTY RATES ( %)
Men

under 15
15 − 20
20 − 25
25 − 30
over 30

Women

under 15
15 − 20
20 − 25
25 − 30
over 30

Pov.inc.≥ 30 %, Men: Almeŕıa, Granada, Córdoba, Badajoz, Ávila,
Salamanca, Zamora, Cuenca.

Women: also Jaén, Albacete, Ciudad Real, Palencia, Soria. 15
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POVERTY GAPS ( %)

Men

under 5
5 − 7.5
7.5 − 10
10 − 12.5
over 12.5

Women

under 5
5 − 7.5
7.5 − 10
10 − 12.5
over 12.5

Pov.gap ≥ 12.5 %, Men: Almeŕıa, Badajoz, Zamora, Cuenca.

Women: Granada, Ameŕıa, Badajoz, Ávila, Cuenca. 16
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SOURCES OF INFORMATION

• Survey: Unit level values of target variable and aux. variables
for sampled units.

• Census/Admin. records: Values of aux. variables for each
population unit −→ confidentiality issues.

• Aggregated aux. information: Counts, totals/means of aux.
variables from census/admin. registers at the area level or
other aggregation level −→ avoid confidentiality issues.

• Larger surveys: Estimated counts/totals of aux. variables
−→ Measurement error in covariates.

• Non probability surveys, social media, Satellite/Images:
Counts/totals of aux. variables −→ Potential bias.

17



INTRO INDICATORS EB METHOD SIMULATIONS COMPLEX DESIGN APPLICATION INFORMATION SOURCES

THANK YOU VERY MUCH!!
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