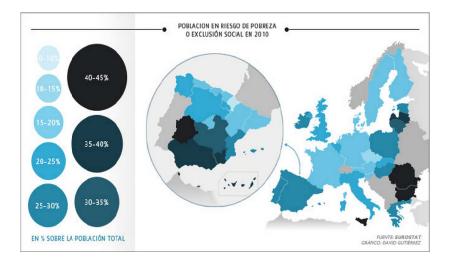
INTROINDICATORSEB METHODSIMULATIONSCOMPLEX DESIGNAPPLICATIONINFORMATION SOURCES000000000000000000000000

Poverty mapping in small areas: complex sampling problems


Isabel Molina Dept. of Statistics, Univ. Carlos III de Madrid

Coauthors: María Guadarrama, J.N.K. Rao

 INTRO
 INDICATORS
 EB
 METHOD
 SIMULATIONS
 COMPLEX
 DESIGN
 APPLICATION
 INFORMATION SOURCES

 •00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

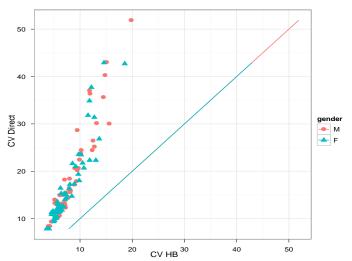
POPULATION AT RISK OF POVERTY

 INTRO
 INDICATORS
 EB
 METHOD
 SIMULATIONS
 COMPLEX DESIGN
 APPLICATION
 INFORMATION SOURCES

 0•0
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

EXAMPLE: RISK OF POVERTY IN SPAIN

- Data: Survey on Income and Living Conditions, 2006.
- Sample size: *n* = 34, 389 out of *N* = 43, 162, 384.
- Parameters: At-risk-of-poverty rates for the 52 provinces by gender.
- Poverty line z = 0.6 × Median(disposable equivalent income): In 2006, z = 6,557 euros→ approx. 20% at risk.


Province	Gender	n _d	At risk	ĈV Dir.	<i>ĈV</i> EB	ĈV H₿
Soria	F	17	6	51.87	16.56	19.82
Tarragona	М	129	18	24.44	14.88	12.35
Córdoba	F	230	73	13.05	6.24	6.93
Badajoz	М	472	175	8.38	3.48	4.24
Barcelona	F	1483	191	9.38	6.51	4.52

 INTRO
 INDICATORS
 EB
 METHOD
 SIMULATIONS
 COMPLEX DESIGN
 APPLICATION
 INFORMATION SOURCES

 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

EXAMPLE: RISK OF POVERTY IN SPAIN

CV, At-risk-of-poverty rate

INTRO INDICATORS EB METHOD SIMULATIONS COMPLEX DESIGN APPLICATION INFORMATION SOURCES

POVERTY AND INEQ. INDICATORS

- E_{dj} welfare measure for indiv. *j* in domain *d*.
- *z* = poverty line.
- FGT poverty indicator of order α for domain d:

$$F_{\alpha d} = rac{1}{N_d} \sum_{j=1}^{N_d} \left(rac{z-E_{dj}}{z}
ight)^{lpha} I(E_{dj} < z), \quad lpha \geq 0.$$

- When $\alpha = 0 \Rightarrow$ **Poverty incidence** (or at-risk-of-poverty rate)
- When $\alpha = 1 \Rightarrow$ **Poverty gap**
- **Other:** Quintile share ratio, Gini coef., Sen index, Theil index, Generalized entropy, Fuzzy monetary/supplementary index.

✓ Foster, Greer & Thornbecke (1984), Econom.
 ✓ Neri, Ballini & Betti (2005), Stat. in Transition

 INDICATORS
 EB METHOD
 SIMULATIONS
 COMPLEX DESIGN
 APPLICATION
 INFORMATION SOURCES

 000
 00
 00
 00
 00
 00
 00

DIRECT ESTIMATORS

• FGT pov. indicator as a mean:

$$F_{\alpha d} = rac{1}{N_d} \sum_{j=1}^{N_d} F_{\alpha dj}, \quad F_{\alpha dj} = \left(rac{z-E_{dj}}{z}
ight)^{lpha} I(E_{dj} < z)$$

• HT estimator:

$$\hat{F}_{\alpha d}^{DIR} = \frac{1}{N_d} \sum_{j \in s_d} w_{dj} F_{\alpha dj}, \quad \hat{F}_{\alpha d}^{S} = \frac{1}{n_d} \sum_{j \in s_d} F_{\alpha dj}.$$

• Highly inefficient for areas d with small sample size n_d .

 INDICATORS
 EB
 METHOD
 SIMULATIONS
 COMPLEX DESIGN
 APPLICATION
 INFORMATION SOURCES

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00</

INDIRECT ESTIMATORS

 Indirect estimator: It borrows strength from other areas by making some kind of homogeneity assumption across areas (model with common parameters) that uses auxiliary information.

NESTED ERROR MODEL

- The distribution of incomes *E*_{dj} is highly right skewed.
- Select a transformation T() such that the distribution of $y_{dj} = T(E_{dj})$ is approximately Normal.
- Assumption: $y_{dj} = T(E_{dj})$ satisfies the nested error model:

$$\begin{aligned} y_{dj} &= \mathbf{x}'_{dj} \boldsymbol{\beta} + u_d + e_{dj}, \quad j = 1, \dots, N_d, \ d = 1, \dots, D\\ u_d \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_u^2), \quad e_{dj} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_e^2) \end{aligned}$$

✓ Battese, Harter & Fuller (1988), JASA

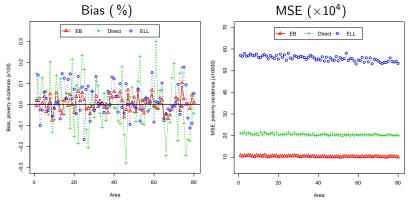
 INDICATORS
 EB METHOD
 SIMULATIONS
 COMPLEX DESIGN
 APPLICATION
 INFORMATION SOURCES

 000
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

EB METHOD FOR POVERTY ESTIMATION

• Poverty indicators in terms of $\mathbf{y}_d = (y_{d1}, \dots, y_{dN_d})'$:

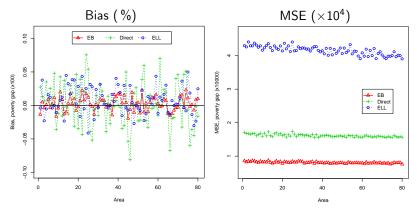
$$F_{\alpha d} = \frac{1}{N_d} \sum_{j=1}^{N_d} \left\{ \frac{z - T^{-1}(y_{dj})}{z} \right\}^{\alpha} I\left\{ T^{-1}(y_{dj}) < z \right\} = h_{\alpha}(\mathbf{y}_d).$$


- Partition \mathbf{y}_d into sample and out-of-sample: $\mathbf{y}_d = (\mathbf{y}'_{ds}, \mathbf{y}'_{dr})'$
- Best predictor: Minimizes the MSE

$$\tilde{F}_{\alpha d}^{B} = E_{\mathbf{y}_{dr}} \left[F_{\alpha d} | \mathbf{y}_{ds}; \boldsymbol{\beta}, \sigma_{u}^{2}, \sigma_{e}^{2} \right].$$

• Empirical best (EB) predictor: $\hat{F}_{\alpha d}^{EB} = \tilde{F}_{\alpha d}^{B}(\hat{\beta}, \hat{\sigma}_{u}^{2}, \hat{\sigma}_{e}^{2}).$ \checkmark Molina and Rao (2010), CJS INTROINDICATORSEBMETHODSIMULATIONSCOMPLEX DESIGNAPPLICATIONINFORMATION SOURCES000000000000000000

POVERTY RATE


- EB much more efficient than ELL and direct estimators.
- ELL even less efficient than direct estimators!

INTRO	INDICATORS	EB METHOD	SIMULATIONS	COMPLEX DESIGN	APPLICATION	INFORMATION SOURCES
000	000	00	0.	00	000	00

POVERTY GAP

• Same conclusions as for poverty incidence.

INTROINDICATORSEBMETHODSIMULATIONSCOMPLEX DESIGNAPPLICATIONINFORMATION SOURCES000000000000000000

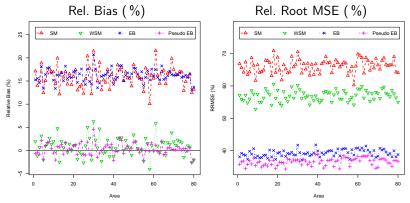
PSEUDO EB

• Best predictor for additive area parameters:

$$\tilde{F}_{\alpha d}^{B} = E_{\mathbf{y}_{dr}} \left[F_{\alpha d} | \mathbf{y}_{ds} \right] = \frac{1}{N_{d}} \left[\sum_{j \in s_{d}} F_{\alpha dj} + \sum_{j \in r_{d}} \underbrace{E(F_{\alpha dj} | \mathbf{y}_{ds})}_{E(F_{\alpha dj} | \mathbf{y}_{ds})} \right],$$

• Under the nested-error model:

$$E(F_{\alpha dj}|\mathbf{y}_{ds}) = E(F_{\alpha dj}|\overline{\mathbf{y}}_{d}) \longrightarrow E(F_{\alpha dj}|\overline{\mathbf{y}}_{dw}).$$


• Pseudo Best predictor for additive parameters:

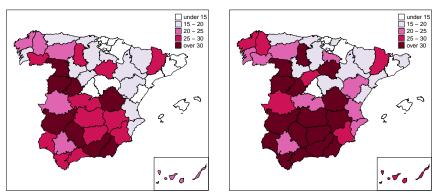
$$\tilde{F}_{\alpha d}^{PB} = \frac{1}{N_d} \left[\sum_{j \in s_d} F_{\alpha dj} + \sum_{j \in r_d} \underbrace{E(F_{\alpha dj} | \bar{y}_{dw})}_{E(F_{\alpha dj} | \bar{y}_{dw})} \right]$$

INTROINDICATORSEBMETHODSIMULATIONSCOMPLEX DESIGNAPPLICATIONINFORMATION SOURCES000000000000000000

PSEUDO EB

- Including sampling weights reduces the design bias!
- Pseudo EB estimators do not lose much efficiency.

POVERTY MAPPING IN SPAIN


- Data: Spanish Survey on Income and Living Conditions (EU-SILC) of 2006.
- **Target:** Calculate EB and HB estimates of poverty incidences and gaps for Spanish provinces by gender.
- Areas: *D* = 52 provinces for each gender. We fit a separate model for each gender.
- Transformation: We consider the nested-error model for the log-equivalized disposable income:
 y_{di} = T(E_{di}) = log(E_{di} + k).
- Explanatory variables: indicators of 5 age groups, of having Spanish nationality, of 3 education levels and of labor force status (unemployed, employed or inactive).

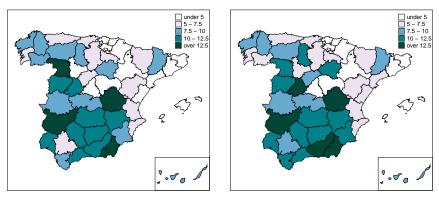
INTRO	INDICATORS	EB METHOD	SIMULATIONS	COMPLEX DESIGN	APPLICATION	INFORMATION SOURCES
000	000	00	00	00	000	00

POVERTY RATES (%)

Men

Women

Pov.inc.≥ **30 %**, **Men:** Almería, Granada, Córdoba, Badajoz, Ávila, Salamanca, Zamora, Cuenca.


Women: also Jaén, Albacete, Ciudad Real, Palencia, Soria. 15

INTRO	INDICATORS	EB METHOD	SIMULATIONS	COMPLEX DESIGN	APPLICATION	INFORMATION SOURCES
000	000	00	00	00	000	00

POVERTY GAPS (%)

Men

 $Pov.gap \ge 12.5$ %, Men: Almería, Badajoz, Zamora, Cuenca. Women: Granada, Amería, Badajoz, Ávila, Cuenca.

SOURCES OF INFORMATION

- **Survey:** Unit level values of target variable and aux. variables for sampled units.
- **Census/Admin. records:** Values of aux. variables for each population unit → confidentiality issues.
- Aggregated aux. information: Counts, totals/means of aux. variables from census/admin. registers at the area level or other aggregation level → avoid confidentiality issues.
- Larger surveys: Estimated counts/totals of aux. variables
 → Measurement error in covariates.
- Non probability surveys, social media, Satellite/Images: Counts/totals of aux. variables → Potential bias.

INTRO	INDICATORS	EB METHOD	SIMULATIONS	COMPLEX DESIGN	APPLICATION	INFORMATION SOURCES
000	000	00	00	00	000	0•

THANK YOU VERY MUCH!!