ESRA Conference 2019 Predictive Modeling and Machine Learning in Survey Research Zagreb, 18 Jul 2019

UPDATE ON MACHINE LEARNING IN DATA ANALYSIS FOR SOCIAL RESEARCH

Arne Bethmann (MEA) Jonas Beste (IAB) Giuseppe Casalicchio (LMU) Bernd Bischl (LMU)

This project has received funding from the European Union under grant greement VS/2018/0285 and the European Union's Horizon 2020 research and innovation programme under grant greements No 676536, No 654221 SPONSORED BY THE

Machine Learning Tasks

	Numerical outcome	Categorical outcome
Supervised outcome observed	 Regression task Predict the average fiancial wealth of migrants and non-migrants Predict blood measures from dried blood spots 	 Classification tasks Predict propensity scores to analyse the difference in health between migrants and non- migrants Analyze the effect of education on old age poverty
Unsupervised outcome unobserved	 Factor analysis tasks Predict individual factor scores on the EURO-D scale Predict movement intensity from accelerometry data 	 Clustering tasks Find similar groups of labour market trajectories among SHARE individuals Find typology of SHARE interviewers in order to identify suspicious clusters

Some algorithms/models

	Numerical outcome	outcome Categorical outcome	
Supervised outcome observed	 Regression tasks Ordinary Least Squares Linear Models Splines, Lasso, Ridge Regression Trees, Random Forests Support Vector Machines k-Nearest-Neighbors Neural Nets, "Deep learning" 	 Classification tasks Generalized Linear Models (Logistic or probit,) Splines, Lasso, Ridge Classification Trees, Random Forests Support Vector Machines k-Nearest-Neighbors Neural Nets, "Deep learning" Naive bayes 	
Unsupervised outcome unobserved	 Factor analysis tasks Principal Components Analysis (PCA) Exploratory Factor Analysis (EFA) Confirmatory Factor Analysis (CFA) 	 Clustering tasks Hierarchical clustering (k- Means, Linkage, Ward) Model based (Finite mixtures,) Latent Class Analysis (for ordinal outomes) 	

... among many others

Estimating effects as a regression tasks

- Estimate effect of variable on outcome
- Produce easily interpretable statistics
- Applicable to any (ML) model that yields individual predictions (i.e. model agnostic)

Regression tasks

Example data

Example learner/model: regression tree

- 1. Estimate (complex, multivariate) model
- 2. Set all cases in sample to first value for variable (e. g. gender = 0 "female")
- 3. Predict response for all cases
- 4. Set all cases in sample to next value for variable (e. g. gender = 1 "male")
- 5. Predict response for all cases again
- 6. Calculate AME / APE as mean difference between two predictions for all cases

Average marginal effects

	Linear Model	Regression Tree
Gender (male vs. female)		
AME / APE	3.61€	3.68€
95 % CI Lower Bound	2.43€	2.42€
95 % CI Upper Bound	4.65€	4.91€
Age (per year)		
AME / APE	0.32€	0.75€
95 % CI Lower Bound	-0.05€	0.09€
95 % CI Upper Bound	0.66€	1.32€

Data: ISSP Germany 2012; Cls: bootstrap estimates

 "ame" R package (Average Marginal Effects)

Giuseppe Casalicchio (Comp. Statistics, LMU) https://github.com/compstat-Imu/ame

- Integrates with mlr "Machine Learning in R" – a very comprehensive ML framework Bernd Bischl et al. (*Comp. Statistics, LMU*) <u>https://github.com/mlr-org/mlr</u>
- (Still) Work in progress:
 Paper discussing approach and implementation (Beste, Bethmann & Casalicchio)

Pass by at our booth

