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ML tasks in substantive social research

Numerical outcome Categorical outcome

Supervised
outcome
observed

Regression task
• Predict the average fiancial

wealth of migrants and non-
migrants

• Predict blood measures from
dried blood spots

Classification tasks
• Predict propensity scores to

analyse the difference in health
between migrants and non-
migrants

• Analyze the effect of education
on old age poverty

Unsupervised
outcome

unobserved

Factor analysis tasks
• Predict individual factor

scores on the EURO-D scale
• Predict movement intensity

from accelerometry data

Clustering tasks
• Find similar groups of labour

market trajectories among
SHARE individuals

• Find typology of SHARE 
interviewers in order to identify
suspicious clusters

Machine Learning Tasks
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Some algorithms/models

Numerical outcome Categorical outcome

Supervised
outcome
observed

Regression tasks
• Ordinary Least Squares
• Linear Models
• Splines, Lasso, Ridge
• Regression Trees, Random 

Forests
• Support Vector Machines
• k-Nearest-Neighbors
• Neural Nets, „Deep learning“

Classification tasks
• Generalized Linear Models 

(Logistic or probit, …)
• Splines, Lasso, Ridge
• Classification Trees, Random 

Forests
• Support Vector Machines
• k-Nearest-Neighbors
• Neural Nets, „Deep learning“
• Naive bayes

Unsupervised
outcome

unobserved

Factor analysis tasks
• Principal Components

Analysis (PCA)
• Exploratory Factor Analysis 

(EFA)
• Confirmatory Factor Analysis 

(CFA)

Clustering tasks
• Hierarchical clustering (k-

Means, Linkage, Ward …)
• Model based (Finite mixtures, 

…)
• Latent Class Analysis (for ordinal

outomes)

… among many others
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Estimating effects as a regression tasks

• Estimate effect of

variable on outcome

• Produce easily

interpretable statistics

• Applicable to any (ML) 

model that yields

individual predictions

(i.e. model agnostic)
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Regression tasks

Hourly wage by gender and age (ISSP Germany 2012)

Example data
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Regression tasks

Example learner/model: regression tree
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Average marginal effects

1. Estimate (complex, multivariate) model

2. Set all cases in sample to first value for 
variable (e. g. gender = 0 “female”)

3. Predict response for all cases

4. Set all cases in sample to next value for 
variable (e. g. gender = 1 “male”)

5. Predict response for all cases – again

6. Calculate AME / APE as mean difference 
between two predictions for all cases
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Average marginal effects

Linear Model Regression Tree

Gender (male vs. female)

AME / APE 3.61 € 3.68 €

95 % CI Lower Bound 2.43 € 2.42 €

95 % CI Upper Bound 4.65 € 4.91 €

Age (per year)

AME / APE 0.32 € 0.75 €

95 % CI Lower Bound -0.05 € 0.09 €

95 % CI Upper Bound 0.66 € 1.32 €

Data: ISSP Germany 2012; CIs: bootstrap estimates
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Recent and next steps

• „ame“ R package (Average Marginal 
Effects)

Giuseppe Casalicchio (Comp. Statistics, LMU)

https://github.com/compstat-lmu/ame

• Integrates with mlr – „Machine Learning in 
R“ – a very comprehensive ML framework

Bernd Bischl et al. (Comp. Statistics, LMU)

https://github.com/mlr-org/mlr

• (Still) Work in progress:

Paper discussing approach and implementation
(Beste, Bethmann & Casalicchio)

https://github.com/compstat-lmu/ame
https://github.com/mlr-org/mlr
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Pass by at our booth


