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• Mixed-mode (MM) designs are used in many surveys (de Leeuw, 
2005)

• MM designs may introduce differential measurement effects

• The key challenge is to disentangle selection and measurement 
effects which are completely confounded

• How to disentangle selection and measurement in observation 
studies?  
– Use of propensity score (PS) matching (Lugtig et al., 2011) 

Background and motivation
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• RO1: Evaluate the performance of different formulations of 
propensity score models for mixed-mode data from complex 
sample surveys 

• RO2:  What can matching tell us about whether Address Based 
Online Sampling (ABOS) compares to ‘gold standard’ of face-to-
face interviewing

• ES1: Mixed-mode observational studies based on face-to-face and 
online surveys 

• ES2: Three different methods of estimating propensity scores 

• ES3: Three different analytical methods of estimating 
measurement effects in matched sample 

Research Objectives & empirical 
strategy
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Face-to-Face Survey
• Multi-stage random sample, 1 randomly selected adult aged 16+ 

• Response rate 60% (n=666)

Online (follow up) Survey
• Respondents who participated in 2013 face-to-face main CLS (2013) 

• Respondents invited to participate using web and postal (i.e. those without 
internet access) 

• Response rates 37% (n=1,576 online=1, 415 and postal=161) 

• Only online respondents used in this analysis

Address based online surveying (ABOS) 
• Up to to maximum of four individuals in a household for participation 

• Algorithm used to clean fraudulent completions

• Had postal option for the population not covered by internet

• Response rate 17% (n=834, online=789 and postal=48) 

• Only online respondents considered for this analysis 

Data sets
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Representation of the CLS study

Data sets
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Propensity Score (PS) Matching 

• Three different formulations of propensity scores models based on how 
survey weights are incorporated considered:

 No sampling weights included in estimation (unweighted model)

 Survey weights incorporated as a covariate (weight as covariate model)

 Survey weights incorporated in estimation (weighted model)

• Also considered are three different analytical methods of estimating 
measurement effects from matched sample:

 No sampling weights included on the outcome analysis 

 Matched control units retain their natural sampling weights 

 Matched control units inherit sampling weights of the treated units to which they 
were matched to 

Methodology
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• Logistic regression used to estimate propensity scores 

• The outcome is the survey modes assigned to survey respondents 

• Social-demographic and area variables for the respondents are 

used as baseline covariates for PS model

• The PS model as a balancing score is evaluated by checking area 

of common support using histograms 

Methodology
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• Matching sample obtained using one-to-one greedy nearest 

neighbour matching without replacement.

• Quality of the matched samples is assessed using covariate 

balance defined in terms of absolute standardised mean 

differences (SMD)

• SMD <0.10 indicate that the matched sample has adequate 

covariate balance 

Methodology
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• The selection and measurement effects are evaluated using 
Absolute Percentage Differences (APD) estimates  

• APD estimated from 70 variables that consists of attitudinal and 
behavioural questions

• APD is the difference between the proportion obtained for a 
response in a certain question for a given mode minus the 
proportion in another mode as follows:
 Given a categorical variable with 𝐾 response levels, 𝐾 − 1 APD estimates are 

derived, where the omitted  response level is the one with the lowest frequency.

 Let ො𝜋𝑖𝑗𝐴 and  ො𝜋𝑖𝑗𝐵 denote the estimated percentage proportions for question 𝑗 and 

categorical level 𝑖 for survey modes 𝐴 and 𝐵 respectively

 Then APD estimate denoted as 𝑦𝑖𝑗 is defined 𝑦𝑖𝑗= ො𝜋𝑖𝑗𝐴 − ො𝜋𝑖𝑗𝐵

• The effectiveness of PS matching in disentangling selection and 
measurement effects is measured by comparing the median of the  
APD estimates before and after matching

Methodology
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Histograms of propensity scores distributions before and after 
matching for face-to-face and online (follow up) (a), face-to-face 
and ABOS (b) and ABOS and online (c) 

Results
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Estimated mode effects by Question before and after matching 
for face-to-face and online (follow up) (a), face-to-face and 
ABOS (b), and ABOS and online (follow up) (c)

Results
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• Majority of total mode effects between the online and face-to-face 
surveys is due to measurement rather than selection effects

• Neither of the two online surveys was similar to the face-to-face 
interview after matching. Therefore, online surveys do not provide 
equal or better data quality than higher response rate face-to-face 
interviews.

• Propensity score matching cannot be assumed to be a completely 
effective method for removing selection effects in surveys with 
different modes of data collection. 

• Specification of different formulations of survey weights in 
propensity score models and outcome analysis were found to have 
no impact on the estimates of mode effects.

Conclusion
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Thank You

Email: Eliud.Kibuchi@glasgow.ac.uk

Twitter: @e_Kibuchi
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