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General Issue

Interest / General question:

@ There is a gender pay gap; Women earn less than men
(Blau & Kahn, 2017; Weichselbaumer & Winter-Ebner, 2005)

@ Why is that the case? What influences income?

o Different underlying mechanisms are not sufficiently disentangled so
far
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General Issue

@ One line of argumentation is that the attitudes and behavior of a
person related to their sex can explain differences (Mueller & Plug,
2006; Drydakis et al., 2018)

@ We only measure sex in surveys

@ Sex is then used as a proxy for gender
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General Issue

Sex and gender are not the same!

@ Sex is a categorization upon socially agreed on biological attributes
(West & Zimmermann, 1987)

@ Gender is the situational social behavior related to sex

@ An understanding of the gender pay gap might not be possible
without a better measurement for gender
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Research Question

@ Gender role items (GRI) might capture the concept of gender related
to wage

@ GRI measure attitudes towards gender ideologies and labor market
participation vs. family (Braun, 2013)

@ Some scholars find a relationship between GRI and income (Stickney
& Konrad, 2007; Grove, 2011)

@ How big is the impact of GRI on income compared to sex?
@ Can GRI improve the prediction of income?

@ Prediction can give insights on how important a variable is
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Research Strategy

Comparing the results of four different models:

1. Empty model with only controls

2. Model including sex and control variables

3. Model including gender roles items and control variables

4. Full model with sex, gender roles items and control variables
Applying random forest to evaluate prediction performance and variable
importance
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International Social Survey Program (ISSP) from 2012
Topic in 2012 was " Family and Changing Gender Roles”
40 countries (Turkey excluded) - 44 country variables
40.051 observations
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@ Income: 1. annualized, 2. log transform, and 3. standardized

o Controls: Age, country, working hours, legal partnership, health,
location place of living, education, employment status, employment
type, supervisor, organization type, and union membership
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GRI (5-point scale + can't choose) (GESIS, 2012):

1. All in all, family life suffers when the woman has a full-time job.

2. Both the man and woman should contribute to the household income.
3. A man’s job is to earn money; a woman's job is to look after the home
and family.

4. Still thinking about the same couple, if both are in a similar work
situation and are eligible for paid leave, how should this paid leave period
be divided between the mother and the father?

mother entire, father not any / mother most, father some / mother and
father half / father most, mother some / father entire, mother not any /
can't choose
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Random Forest

80% of the data as training data
500 regression trees per model
Grid: mtry = 4

Caret package in R (Kuhn, 2017)

R?, prediction performance, and variable importance to compare
models
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‘ Empty Model Sex Model GRI Model Full Model

R2 0.468 0.474 0.444 0.445
Prediction 1.62 1.61 1.69 1.68

Table: Evaluation of the predictions
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Figure: Prediction of income - in gray - compared to actual values - the black line
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Variable importance
Empty Model:

o Age

o Country

@ Unemployed
Sex Model:

@ Sex 10th most important variable (value 52)
GRI Model:

@ No GRI in the first 20 variables

@ Small importance (values from 0 to 35)

@ Most important cut point: A mans job is to earn money; a womans
job is to look after the home and family - strongly disagree
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Variable Importance
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Figure: Variable importance of sex and GRI in the Full Model
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Conclusion

@ GRI cannot improve the prediction of income
@ Sex is an important predictor for the income
What does that mean substantially?

@ GRI might be correlated with income, but they do not have a big
impact on income

@ Attitude towards gender roles and family vs. labor market
participation might not (fully) capture the concept of gender

@ A better operationalization for gender is needed

@ Sex is used by research to categorize, but maybe also by others like
employers and firms
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Thank you!
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