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Abstract: The present study discusses the usage of non-linear constraints in regression models with
multiple categorical outcomes. With this approach, effect differences between equations are made acces-
sible to statistical tests while potential differences in residual variation are explicitly taken into account.
In this context, it can be shown that the techniques reviewed by Williams (2010) are conjointly equivalent
to the specification of non-linear constraints in multivariate regression models. However, the application
of non-linear constraints extends these approaches into a structural equation modeling framework, which
allows the researcher to address a broader range of research questions.
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1 Introduction

In comparison with standard linear models, the fixation of the unobserved error variance
imposes several pitfalls in the application of nonlinear regression methods. Since the
coefficients of these models are inevitably rescaled so that the respective residual variance
equals 1 (probit) or π2/3 (logit), a naive comparison of coefficients of nonlinear models
between different groups can lead to false conclusions. While a variety of studies evaluate
the difficulties of effect comparisons within the limits of single dependent variables,
the present study focuses on nonlinear models with multiple outcomes, e.g. dyadic
probit models in a structural equation modeling framework. In this context, it can
be shown that comparisons of coefficients between different equations are invalid when
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the assumption of equal residual variances is not met. Thus, in this case even effect
comparisons within the specified model are an error-prone task.
Against this background, the aim of this study is twofold: First, the usage of non-linear

constraints in multivariate regression models with categorical outcomes is discussed as
a means for testing effect differences across equations. In this context, it is demon-
strated that the specification of non-linear constraints enables the researcher to impose
a variety of equality constraints while taking potential differences in residual variation
explicitly into account. Second, the outlined approach proposed in this paper is related
to previous techniques that have been developed in the context of group comparisons
with nonlinear models. Here, building on Williams (2010), it is shown that the tech-
niques proposed by Allison (1999), Hauser and Andrew (2006) and Williams (2009) are
conjointly equivalent to the specification of non-linear constraints in multivariate re-
gression models. However, the latter extends these methods into a structural equation
modeling framework, enabling the researcher the specification of more elaborated model
structures.
This paper is organized as follows: The next section (2) provides a short review

of previously proposed methods concerning effect comparisons in standard (i.e. single
equation) logit and probit models. In the following section (3), difficulties of effect
comparisons are discussed in the context of structural equation models with multiple
categorical outcomes, resulting in the introduction of non-linear constraints. The em-
pirical application of this technique is exemplified in section 4, whereas in subsection
4.1 non-linear constraints are related to the methods outlined in section 2 within the
application of a dyadic logit model, followed by an example using an extended SEM-
structure (subsection 4.2). The paper closes with a summarizing discussion concerning
the advantages and limitations in the application of non-linear constraints (section 5).

2 Effect comparison in logit & probit models

The application of logit and probit models is characterized by a number of substantial,
distinctive features. Due to implicit assumptions in the context of model identifica-
tion, particularly the comparison of coefficients across different models and/ or groups
involves some difficulties. These problems can be demonstrated referring to a latent
response variable y∗, which is considered causal for the observed value of y within a
threshold model (Allison 1999):
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yi =

 0 if −∞ ≤ y∗i < τ

1 if τ ≤ y∗i <∞
(2.1)

Consequently, yi equals 1 if y∗i exceeds a threshold value τ , whereas τ is typically re-
stricted a priori to zero (τ = 0). The following linear model can be specified for y∗i :

y∗i = β0 + β1xi1 + . . .+ βJxiJ + σεi (2.2)

Here, εi is an error term with constant variance and σ is a non-fixed scale parameter.
Thus, σεi allows for a variable error variance. However, since the scale of y∗i is unknown
and σεi therefore not determinable, the following model is based on implicit assumptions
about εi:

g[P (yi = 1)] = β∗0 + β∗1xi1 + . . .+ β∗JxiJ (2.3)

Assuming εi has a logistic distribution with E(ε) = 0 and V (ε) = π2

3 , g corresponds to
the “logit-link” so that P (yi = 1) = Λ(x′iβ∗).1 The assumption of ε ∼ N(0, 1) leads to
P (yi = 1) = Φ(x′iβ∗), so that g corresponds to the “probit-link” function.2 The relation
between the “true” coefficients β and β∗ is given by:

β∗j = βj
σ

(2.4)

Thus, the β∗- coefficients of logit and probit models are implicitly rescaled by σ due
to the fixed error variance. Compared to β they therefore additionally depend on the
extent of unobserved residual variation. Consequently, the identification assumptions
of nonlinear models ((1) τ = 0, (2) E(ε) = 0, (3) V (ε) = π2

3 respectively V (ε) = 1;
Long 1997) do not allow for naive comparisons of coefficients between different model
specifications, groups, points in time or samples if the value of σ differs between the
corresponding models (see also Mood 2010).
The difficulties concerning effect comparisons between different (nested) model speci-

fications (case 1) result from the fixation of the error variance component in the context
of variance decomposition. Here, the fixed error variance does not allow for a decrease in

1 Λ = cumulative distribution function (cdf) of the standard-logistic distribution.
2 Φ = cumulative distribution function (cdf) of the standard normal distribution.
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residual variation as compensation for an elevated explained variance in models with ad-
ditional explanatory variables. In consequence, the total variance of y∗ must be adjusted
and thus differs between the models. There have been different attempts at solving this
problem, for example the usage of (fully) standardized β- coefficients, average marginal
effects (AME’s) or the KHB method (Karson et al. 2012; see also the overview in Best /
Wolf 2012).3 Correspondingly, comparisons of coefficients between different groups (case
2) can be complicated by differences in explanatory power (of the same model specifi-
cation) between these groups. In this case, the β∗- coefficients refer to y∗- variables
with different (group specific) scales. Furthermore, it is possible that the (“true”) error
variances differ between groups in spite of equal explanatory power, so that the rescaled
β∗- coefficients cannot be compared either (Hoetker 2004, Williams 2010). Due to this
circumstance, specific approaches have been developed in the context of case 2.
Given the outlined difficulties, Allison’s (1999) solution for the inter-group comparison

of coefficients in nonlinear regression models is based on the expansion of the standard-
logistic model by the additional parameter δ:4

P (yi = 1) = Λ(β∗0 +
∑

β∗j xij)× (1 + δGi) (2.5)

= Λ
(
β∗0 +

∑
β∗j xij

1/(1 + δGi)

)

= Λ
(
β∗0 +

∑
β∗j xij

σi

)
with
σi = 1

1 + δGi

Here, Gi is a dummy variable which indicates the affiliation to the respective group and
δ is an adjustment factor (with δ > −1) that allows the group Gi = 1 to deviate from
the fixed residual variance with σi = 1/(1 + δGi) (for Gi = 0, σi equals 1). Furthermore
the model contains the grouping variable in

∑
β∗j xij , enabling group-specific intercepts.

Based on the assumption that several (at least one) variables exert the same “true”
influence in both groups, the corresponding coefficients are rescaled by the same factor
in groups with unequal error variances, whereas the latter is integrated into the model

3 A correction procedure concerning multilevel logit and probit models can be found in Hox (2010).
4 Analogue to Allison (1999), Hauser / Andrew (2006) and Williams (2009) focus on logit models,
subsequent examinations are based on the usage of logit-link functions. Furthermore, comparisons
between two groups are considered.
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(2.5) as a function of δ. If group specific error variances are discovered (e.g. through
a χ2- difference test between models with and without δ) the model can be extended
with (at max J−1) interaction effects between xij and Gi to detect differences in effects
between the groups while taking differences in residual variances into account.
Hauser and Andrew (2006) propose a similar model, yet in a completely different con-

text. Their “logistic response model with proportionality constraints” (LRPC) includes
the additional parameter λk:

P (yik = 1) = Λ(β∗k0 + λk
∑

β∗j xikj) (2.6)

= Λ
(
β∗k0 +

∑
β∗j xikj

σk

)
with
σk = 1

λk

Even though the model has originally been conceptualized to fit k = 1, ...,K educational
transitions, it can be applied to analyze K = 2 groups. In that case, β∗k0 contains
two group specific intercepts, thus the grouping variable is not included in

∑
β∗j xikj

as additional explanatory factor. As a key feature of (2.6), the coefficients of group
2 can deviate from the analogue coefficients of group 1 due to λk, which is restricted
to 1 in group 1 (λ1 = 1). A comparison of (2.5) and (2.6) immediately illustrates the
analogy between Allison’s approach and the LRPC in the case of two groups, whereas
λ2 = 1 + δ. A relaxation of the proportionality assumption of the LRPC can be made
with the introduction of interaction terms between xij and the corresponding grouping
variable (“logistic response model with partial proportionality constraints”; LRPPC).
Finally, a third approach contains the specification of a “heteroscedastic logit model”

(as a special case of “heterogeneous choice” models; Williams 2009):

P (yi = 1) = Λ
(∑

β∗j xij − τ
exp(Giγ)

)
(2.7)

= Λ
(∑

β∗j xij − τ
σi

)
with
σi = exp(Giγ)
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Compared to the former models, (2.7) imposes the restriction β∗0 = 0, thus the threshold
τ is estimated instead of the intercept. In the context of inter-group comparisons, a
grouping dummy Gi can be added to the explanatory variables in

∑
β∗j xij . Within

the “heteroscedastic logit model”, the additional parameter γ allows a deviation of the
fixed error variance within the group Gi = 1 through exp(Giγ) (given the assumption of
equal effects between the groups).5 A comparison of (2.5), (2.6) and (2.7) illustrates the
equivalence of the three modeling strategies, whereas γ = ln(1/(1+δ)) and γ = ln(1/λ2)
(Williams 2010). With the inclusion of interaction effects between xij and Gi, the
“heteroscedastic logit model” additionally enables the specification of an extended model
with group specific effects of β∗ while taking potential differences in error variation into
account.
Even though all three outlined techniques lead to empirically equivalent models, both

Allison’s approach and the “heteroscedastic logit model” are based on entirely differ-
ent rationales of the existing group differences compared to the LRPC. While the first
two approaches initially assume that the difference between the groups lies within the
error variances (which results in apparently different effects across groups), the LRPC
attributes (real) effect differences instead of group specific error variances to the very
same mechanism (Williams 2010). Since these interpretations are not empirically dis-
tinguishable from each other, the underlying assumptions of each model need to be
considered carefully when these methods are applied.6

3 SEM-Extension

So far, difficulties of effect comparisons in logit and probit models have been discussed
for cases with a single dependent variable. However, it can easily be seen that these
problems extend to models with multiple outcomes. Consider the structural equation
model

η = µ+ Γx + ε (3.1)

where η represents a (K×1) vector of latent dependent variables, µ is a (K×1) vector of
intercepts, Γ contains a (K×J) matrix of regression slopes, x is a (J × 1) vector of (ob-

5 In addition, it is possible to specify an extended variance equation with several variance conditioning
variables (exp(

∑
zijγj); Williams 2009).

6 Alternative approaches to this set of problems can further be found in Long (2009) and Breen et al.
(2014).
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served) independent variables and ε is a (K × 1) vector of residuals with ε ∼ N(0,Ω).7

For simplicity, the following derivations focus on the limiting case of two dependent
variables (K = 2), thus equation (3.1) contains:

η1 = µ1 + x′γ1 + ε1 (3.2)

η2 = µ2 + x′γ2 + ε2

Here, γ1 is a (J × 1) vector of regression coefficients which relates x to η1 and γ2 is a
(J × 1) coefficient vector relating x to η2, respectively. With categorical y- variables,
the η- variables are related to their observable counterparts with a threshold model (cf.
y∗ in section 2). In the following, two binary y- variables are considered, where y1 = 1
if η1 ≥ τ1, y1 = 0 if η1 < τ1, y2 = 1 if η2 ≥ τ2 and y2 = 0 if η2 < τ2.
Since a simultaneous specification of all intercepts and thresholds leads to identifi-

cation issues, restrictions have to be imposed on these parameters. In this derivation,
the restriction µ∗ = 0 is specified. Furthermore, identifying assumptions have to be
made concerning the unobservable error variances in Ω, whereas in the following the
standardization ε∗ ∼ N(0,Ψ∗) with diag(Ψ∗) = I is imposed. Given these restrictions,
equation (3.1) results in a multivariate probit model:8

η∗ = Γ∗x + ε∗ (3.3)

The error covariance and coefficient matrices of equation (3.1) and (3.3) are related as
follows:

Ψ∗ = ΛΩΛ (3.4)

Γ∗ = ΛΓ (3.5)

Where Λ contains the inverted standard deviations of the unobserved residuals ε:

7 For a related discussion of model structures which cover relationships between the η- variables (via
Bη) cf. Stein and Pavetic (2013).

8 In this case, the probability of e.g. y1 = 1 is given by P (y1 = 1) = Φ(τ1 − E(η∗
1)).
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Λ =
[
σ1 0
0 σ2

]−1

Using scalar notation, equation (3.5) implies that γ∗1j = γ1j

σ1
and γ∗2j = γ2j

σ2
, which corre-

sponds with the well-known problem outlined in section 2. However, in a SEM-framework
the fixation of the unobserved error variances poses problems concerning effect compar-
isons within the specified model (i.e. effect comparisons between equations). Consider
the hypothesis γ1j = γ2j , assuming that the effect of a given predictor is equal in both
equations. Such effect comparisons may be of particular interest in e.g. dyadic models,
where the dependent variables of two partners are related to the same set of actor-specific
independent variables (Kenny et al. 2006). With categorical outcomes, such hypotheses
must be formulated in terms of Γ∗ (Stein / Pavetic 2013, Pavetic 2009, Sobel / Arminger
1992):

γ∗1jσ1 = γ∗2jσ2

γ∗1j = σ2
σ1
γ∗2j (3.6)

γ∗1j = λγ∗2j

Thus, it can be seen that with the specification of γ∗1j = λγ∗2j , the relation of the
unobserved error variances is taken into account within the imposed equality restriction.
The empirical implementation of equation (3.6) results in the specification of non-linear
parameter constraints, imposing proportionality restrictions on the coefficients of interest
through the introduction of λ. Subsequently, the constrained model can be compared
with an unrestricted model specification in order to draw conclusions concerning the
postulated hypothesis of equal effects across equations. In this context, different sets of
parameter restrictions (i.e. multiple hypotheses) can be tested in a stepwise manner.
The outlined procedure of (sequenced) effect comparisons in nonlinear multivariate

regression models requires SEM-software which allows the specification of non-linear
constraints. Examples of statistical software packages with corresponding capabilities
include MECOSA (Arminger et al. 1996) and Mplus (Muthén 1998-2004), whereas the
latter is used for the empirical applications of this study.9

9 In this case, non-linear constraints can be easily specified within Mplus’ MODEL CONSTRAINT
subsection (Muthén / Muthén 1998-2012).
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4 Application

In this section, the previously outlined technique will be exemplified within some em-
pirical applications. In this context, it is useful to distinguish between two types of
models, which are illustrated in Figure 1. Model type 1 encompasses a simple dyadic
model structure, where the non-metric dependent variables of two partners (male & fe-
male) are related to a set of individual-level and household-level predictors. Without
the specification of additional partner-related effect structures (and given the availability
of a distinct partner identification in the data set), this model can be fitted either in
a structural equation modeling framework (data in “wide format”) or within a simple
group comparison between gender using standard logit models (data in “long format”).
Thus, any previously outlined technique is applicable for model structures of type 1.
However, dyadic research typically involves the specification of partner effects and the
consideration of error covariances, which leads to an elaborated model structure (model
type 2 ). Since models of this type inherently imply the usage of specific SEM estimation
methods, the specification of non-linear constraints is the remaining method of choice
concerning effect comparisons between gender in this context.

Figure 1: Dyadic model structures with non-metric outcomes

(a) Model type 1 (b) Model type 2

y* Partner 1

x Partner 1

x HH- Level

x Partner 2

y* Partner 2

x HH- Level

x Partner 1

y* Partner 1

x Partner 2

y* Partner 2

The following empirical application consists of two steps, covering both model types of
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Figure 1. At first, the analogy of the previously outlined approaches will be illustrated
within a simple dyadic model structure of type 1 (example 1, section 4.1). Subsequently,
the usage of non-linear constraints will be exemplified based on an extended model spec-
ification of type 2 (example 2, section 4.2).10 In both cases, the (binary) dependent
variables represent the mobility disposition of partner 1 (male; y1) and partner 2 (fe-
male; y2), which are assumed to be a function of the exogenous variables described in
Table 1.11 Whereas in both applications the same set of independent variables is used,
the mobility dispositions of example 2 are assumed to be additionally dependent on
individual characteristics of the respective partner (“partner effects” in Table 1). The
empirical investigations are based on data from wave z (2009) of the German Socio-
Economic Panel Study (GSOEP; Wagner et al. 2007), which allows a distinct partner
matching through the usage of partner identification codes.

Table 1: Description of exogenous variables (Example 1 & 2)
actor effects partner effects

Variables male female male female

x1, x16 Age γ11 γ216
x2, x17 Education (in years) γ12 γ217 γ117 γ22
x3, x18 marginal Emp. (Ref: full / part-time Emp.) γ13 γ218 γ118 γ23
x4, x19 Non-Working (Ref: full / part-time Emp.) γ14 γ219 γ119 γ24
x5, x20 Life Satisfaction γ15 γ220
x6, x21 Risk Tolerance γ16 γ221

x7 Household Income γ17 γ27
x8 Household Size γ18 γ28
x9 Household Size2 γ19 γ29
x10 Owner (Ref: Renter) γ110 γ210
x11 Tenure (in years) γ111 γ211
x12 Local ties γ112 γ212
x13 Number of Children < 6 y. γ113 γ213
x14 Number of Children 6 - 16 y. γ114 γ214
x15 Mover 2008 (Ref: Stayer) γ115 γ215

4.1 Example 1: Comparison of correction methods

In order to compare the techniques reviewed in section 2 with the proposed approach
of section 3, the same model specification has been fitted using Allison’s (1999), Hauser

10 The corresponding Stata and Mplus Codes are available from the authors upon request.
11 The y- variables are based on the question “Could you imagine moving away from here because

of family or career reasons?” with the dichotomized response categories 0=”No / It depends” and
1=”Yes”.
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/ Andrews’ (2006) and Williams’ (2009) methods. In addition, an equivalent model
has been implemented in Mplus, using non-linear constraints as proposed in this paper.
In all cases, the mobility disposition of both partners (male & female) are assumed to
be solely dependent on actor-related individual features and household characteristics,
so that the model can either be implemented within a dyadic (two equation) SEM-
framework or with a simple group comparison between gender using standard (single
equation) logit regression.12 Selected results of the four model specifications are pre-
sented in Table 2. It can be seen that apparently not only the first three approaches
produce empirically equivalent results (cf. Williams 2010) but also that the model fitted
with Mplus using non-linear constraints (and ML estimation with a logit link) induces
the same LogLikelihood as the former models. Thus, in this case (i.e. applying models
of type 1) all four techniques generate the same empirical results. However, following
Williams (2010) it should be noted that these results may be interpreted quite differently:
From the perspective of Allison’s (1999) and Williams’ (2009) methods, one would con-
clude that the standard deviation of the error term is 5, 1% (δ) lower for the male partner
in comparison with the respective error variation of the female partner, or – equivalently
– that σε is exp(γ) = 1.054 times larger for women than for men. On the other hand,
the LRPC implies that the gender-specific effects differ by .949 (β∗female = λLRPCβ

∗
male)

or 1.054 (β∗male = 1
λLRP C

β∗female), respectively. Finally, in line with the derivations of
section 3, the Mplus model with non-linear constraints constitutes that the ratio σfemale

σmale

of the (unobserved) error standard deviations equals λMplus = 1.053, which corresponds
with the perspective of Allison’s (1999) and Williams’ (2009) techniques.

Table 2: Comparison of correction methods

Allison’s
approach (1999)

LRPC (Hauser
/ Andrew 2006)

Heteroscedastic
logit model

(Williams 2009)

Mplus model
with non-linear
constraints

δ -.051 (.094)
λ (LRPC) .949 (.094)
γ .052 (.099)
λ (Mplus) 1.053 (0.110)

1
1 + δGi

= 1.054 1
λ

= 1.054
exp(Giγ) =

1.054

LL -3721.903 -3721.903 -3721.903 -3721.903

12 In this context, the same effect structure is implied for both gender, thus a fully restricted Mplus
model is estimated and the single equation models are fitted without any gender interactions.
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4.2 Example 2: Non-linear constraints in dyadic probit models

As with model structures of type 1, non-linear constraints can be easily implemented
in extended dyadic models with partner effects and error covariances (type 2 models).
Furthermore, for both model types, series of variously restricted models can be specified
in order to test effect differences of specific sets of parameters while taking potential
differences in residual variation into account. This procedure has its analogy in the
inclusion of interaction terms with the grouping variable within the single equation
approaches discussed in section 2.13 In the context of SEM-structures, this practice
requires a fully constraint model to be fitted first, followed by a set of less restrictive
models. Subsequently, χ2- difference tests can be carried out in order to test which
specification (i.e. hypothesis) should be preferred.
Turning to the previous example from mobility research, the outlined testing procedure

with non-linear constraints is illustrated on the basis of an extended dyadic model of
type 2 (including partner effects and a specified error covariance).14 In this context, five
model versions have been specified: Starting from the fully constraint model 1, model 2
relaxes the assumption that the partner effects γ117 and γ22 (partner effects of education)
are proportionally equivalent. The next set of partner effect restrictions (concerning the
effects of employment status) is relaxed in model 3, thus in this case only the actor-related
individual- and household-level effects are constraint to be (proportionally) equal across
equations. Finally, model 4 solely poses restrictions on the individual-level actor effects,
whereas in model 5 no constraints are specified.
The results of the corresponding SB-corrected χ2- difference tests (Satorra / Bentler

1999) are summarized in Table 3. It can be seen that the relaxation of the first restriction
induces a significant improvement in model fit, thus from the perspective developed
here, it can be argued that substantial differences between the gender-specific partner
effects of education can be observed which cannot be solely attributed to differences
in residual variation (since these differences are already accounted for by λ). Given
the insignificant test result of the next χ2- difference test (model 2 vs. model 3), it
becomes clear that such differences cannot be observed concerning the partner effects of
employment status. Furthermore, also the relaxation of the next two sets of parameter
restrictions (actor effects of individual- and household-level predictors) do not induce any
substantial improvement in model fit, thus on the basis of the conducted χ2- difference

13 Therefore, the present strategy bears the same restrictions and assumptions as outlined by Williams
(2009).

14 The following results are based on Mplus’ WLSM estimation procedure, which uses the probit link
(e.g. Muthén 1998-2004).
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tests model 2 provides the best balance between model fit and parsimony.

Table 3: Scaled χ2- difference tests
Model Restriction χ2 df χ2

sc Diff. p r2
y1 r2

y2
1 γ∗11 = λγ∗216 ... γ∗16 = λγ∗221,† 23.426 23 .127 .123

γ∗17 = λγ∗27 ... γ∗115 = λγ∗215,††
γ∗118 = λγ∗23, γ∗119 = λγ∗24,†††
γ∗117 = λγ∗22

†††

2 γ∗11 = λγ∗216 ... γ∗16 = λγ∗221, 19.852 22 2.839 0.092 .124 .128
γ∗17 = λγ∗27 ... γ∗115 = λγ∗215,
γ∗118 = λγ∗23, γ∗119 = λγ∗24,

3 γ∗11 = λγ∗216 ... γ∗16 = λγ∗221, 18.545 20 1.388 0.500 .122 .131
γ∗17 = λγ∗27 ... γ∗115 = λγ∗215,

4 γ∗11 = λγ∗216 ... γ∗16 = λγ∗221, 9.487 11 9.521 0.391 .127 .131
5 6.050 6 3.509 0.622 .124 .134

†actor effects, ††HH-effects, †††partner effects

The preferred model 2 of the previously outlined model series is illustrated in Table 4 in
more detail. Here, all coefficients except for the partner effects of education (γ117 and γ22)
are constrained to be proportionally equal across equations, with γ∗male = λγ∗female. As in
the previous example, λ accounts for potential differences in residual variation, whereas
in this case σfemale

σmale
= 1.071. As a result of the imposed restrictions, symmetric partner

effects can be observed concerning the coefficients of the employment status dummys,
which show a positive effect of a non-working spouse on the mobility disposition for both
gender. In contrast, the unconstraint partner effects of education exhibit a different effect
pattern: Here, higher levels of education of the male partner are related to an increase in
the willingness to move of the female partner, whereas a corresponding effect cannot be
observed in the male’s equation. Thus, as indicated in the previous section, substantial
effect differences can be observed in this case. Additionally, it can be seen that the
inclusion of ψ21 (error covariance) accounts for substantial interdependencies between
both partners, underlining the utility of an extended model specification in applications
with dyadic data structures.
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Table 4: Dyadic probit model with non-linear constraints
Partner 1 (Male) Partner 2 (Female)
γ∗ se γ∗Sxy

γ∗ se γ∗Sxy

actor effects
Age –.009∗ (.004) –.081 –.008∗ (.003) –.076
Education .037∗∗∗ (.008) .097 .034∗∗∗ (.007) .085
marginal Emp.† .033 (.078) .005 .031 (.073) .009
Non-Working† .107∗ (.048) .036 .100∗ (.045) .042
Life Satisfaction –.049∗∗∗ (.011) –.078 –.046∗∗∗ (.010) –.073
Risk Tolerance .061∗∗∗ (.009) .122 .057∗∗∗ (.008) .106

HH-effects
HH-Income .000∗∗∗ (.000) .123 .000∗∗∗ (.000) .114
HH-Size –.100∗∗ (.032) –.102 –.093∗∗∗ (.029) –.095
HH-Size2 .047∗∗∗ (.014) .112 .044∗∗∗ (.013) .104
Owner†† –.311∗∗∗ (.050) –.141 –.290∗∗∗ (.048) –.132
Tenure –.008∗∗∗ (.003) –.087 –.008∗∗∗ (.002) –.081
Local ties –.119∗∗∗ (.025) –.093 –.111∗∗∗ (.024) –.086
Children < 6 y. .030 (.052) .014 .028 (.049) .013
Children 6 - 16 y. .017 (.039) .012 .015 (.037) .012
Mover 2008††† –.156+ (.087) –.034 –.145+ (.081) –.032

partner effects
Education .015 (.011) .037 .042∗∗∗ (.011) .111
marginal Emp.† .105 (.074) .029 .098 (.069) .013
Non-Working† .105∗ (.047) .043 .098∗ (.044) .033
λ 1.071 (.122)
ψ21 .558∗∗∗ (.024)
τ .713 (.058) .700 (.059)
r2

MZ .124 .128
χ2 (22) 19.852
RMSEA .000
CFI 1.000
TLI 1.005
n 3631
†Ref.: full / part-time Emp., ††Ref.: Renter, †††Ref.: Stayer 2008
+: p ≤ 0.1; ∗: p ≤ 0.05; ∗∗: p ≤ 0.01; ∗∗∗: p ≤ 0.001

5 Discussion

In the present study, effect comparisons in nonlinear models have been discussed from
a structural equation modeling perspective. In this case, it has been shown that the
well-known problems which arise in the context of standard (single equation) logit and
probit regression extend to models with multiple non-metric outcomes. More specific,
the fixation of the unobserved error variances poses substantial problems concerning
effect comparisons between equations when the assumption of equal residual variances
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is not met. As a result, a naive (direct) comparison of coefficients across equations
can lead to false conclusions. A potential solution for these problems was discussed
through the implementation of non-linear constraints, which enable the specification of
equality restrictions while taking potential differences in residual variation explicitly into
account. Since non-linear constraints can be easily specified in advanced SEM software
(e.g. Mplus), this method provides a handy tool when categorical variables are analyzed
in a multivariate framework.
Furthermore, the technique outlined in this paper has been related to previously pro-

posed methods which have been (mainly) developed in the context of group comparisons
with single non-metric outcomes (Allison 1999, Hauser / Andrew 2006, Williams 2009).
It has been shown that these approaches induce the same empirical results concern-
ing model specifications which can be fitted either in a nonlinear SEM- framework or
within simple group comparisons using standard logit regression. Thus, the applica-
tion of non-linear constraints involves the same advantages as well as limitations as
the considered single equation techniques (cf. Williams 2009, 2010): On the one hand,
markedly different interpretations of the same (constrained) model result are possible.15

Correspondingly, the hypothesis of unequal effects may be falsely rejected in models
with homogenously different effect patterns between equations, because these effect dif-
ferences can be absorbed into λ. On the other hand, the specification of non-linear
constraints protects against the false rejection of the hypothesis of equal effects in cases
where apparent effect differences are induced by differences in residual variance. Given
the latter capability, the procedure proposed in this paper provides a flexible technique
concerning effect comparisons in nonlinear multivariate regression models. However – as
with the corresponding single equation approaches – the underlying assumptions should
be kept in mind when non-linear constraints are empirically applied.

15 Specifically, the coefficients may not be interpreted to be proportionally equivalent across equations
because of differences in residual variation but to be actually different in effect size (LRPC perspective;
Hauser / Andrew 2006).

15



References

Allison, P. D. (1999): Comparing logit and probit coefficients across groups. In: Socio-
logical Methods & Research 28, 2, pp. 186-208.

Arminger, G., Wittenberg, J. and Schepers, A. (1996): MECOSA 3: A program for the
analysis of general mean- and covariance structures with nonmetric variables, User
Guide. Frauenfeld: SLI-AG.

Best, H. and Wolf, C. (2012): Modellvergleich und Ergebnisinterpretation in Logit- und
Probit-Regressionen. In: Kölner Zeitschrift für Soziologie und Sozialpsychologie 64, 2,
pp. 377-395.

Breen, R., Holm, A. and Karlson, K. B. (2014): Correlations and Nonlinear Probability
Models. In: Sociological Methods & Research 43, 4, pp. 571-605.

Hauser, R. M. and Andrew, M. (2006): Another look at the stratification of educational
transitions: The logistic response model with partial proportionality constraints. In:
Sociological Methodology 36, 1, pp. 1-26.

Hoetker, G. (2004): Confounded coefficients: Extending recent advances in the accurate
comparison of logit and probit coefficients across groups. Working Paper.

Hox, J. J. (2010): Multilevel Analysis. Techniques and Applications. New York, NY:
Routledge.

Karlson, K. B., Holm, A. and Breen, R. (2012): Comparing Regression Coefficients
Between Same-sample Nested Models Using Logit and Probit: A New Method. In:
Sociological Methodology 42, 1, pp. 286-313.

Kenny, D. A., Kashy, D. A. and Cook, W. L. (2006): Dyadic Data Analysis. New York:
Guilford Press.

Long, J. S. (1997): Regression Models for Categorical and Limited Dependent Variables.
Thousand Oaks, CA: Sage.

Long, J. S. (2009): Group comparisons in logit and probit using predicted probabilities.
Working Paper.

Mood, C. (2010): Logistic Regression: Why We Cannot Do What We Think We Can
Do, and What We Can Do About It. In: European Sociological Review 26, 1, pp.
67-82.

16



Muthén, B. O. (1998-2004): Mplus Technical Appendices. Los Angeles, CA: Muthén &
Muthén.

Muthén, L. K. and Muthén, B. O. (1998-2012): Mplus Users Guide. Seventh Edition.
Los Angeles, CA: Muthén & Muthén.

Pavetic, M. (2009): Familiengründung und -erweiterung in Partnerschaften: Statistis-
che Modellierung von Entscheidungsprozessen. Wiesbaden: VS Verlag für Sozialwis-
senschaften.

Satorra, A. and Bentler, P. (1999): A Scaled Difference Chi-square Test Statistic for
Moment Structure Analysis. UCLA Statistics Series No. 260.

Sobel, M. E. and Arminger, G. (1992): Modeling Household Fertility Decisions: A Non-
linear Simultaneous Probit Model. In: Journal of the American Statistical Association
87, 417, pp. 38-47.

Stein, P. and Pavetic, M. (2013): A nonlinear simultaneous probit-model for the inves-
tigation of decision-making processes: Modelling the process of setting up a family in
partnerships. In: Quality and Quantity 47, 3, pp. 1717-1732.

Wagner, G. G., Frick, J. R. and Schupp, J. (2007): The German Socio-Economic Panel
Study (SOEP) - Scope, Evolution and Enhancements. In: Schmollers Jahrbuch 127,
1, pp. 139-169.

Williams, R. (2009): Using Heterogeneous Choice Models to Compare Logit and Probit
Coefficients Across Groups. In: Sociological Methods & Research 37, 4, pp. 531-559.

Williams, R. (2010): Fitting heterogeneous choice models with oglm. In: The Stata
Journal 10, 4, pp. 540-567.

17


	1 Introduction
	2 Effect comparison in logit & probit models
	3 SEM-Extension
	4 Application
	4.1 Example 1: Comparison of correction methods
	4.2 Example 2: Non-linear constraints in dyadic probit models

	5 Discussion
	References

