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Introduction

• Non-probability based sensor data sources are becoming increasingly
popular in social science research and official statistics.

• Maximum information gain: linking survey, sensor and administrative
data (Shlomo/Goldstein 2015; Japec et al. 2015).

• Especially, when a survey and a sensor independently measure an
identical target variable.

• Sensor data is most often not collected for research purposes
(Connelly et al. 2016).

• Nevertheless, sensor data information could be used for research
purposes.
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Research background

• Unnecessary response burden if the information of interest is
accessible from other datasets (Miller 2017; Schnell 2015).

• Especially time-based diary surveys impose a heavy burden.
• Such surveys yield low response rates (Krishnamurty 2008) and

might be biased downwards due to “inaccurate reporting,
nonreporting, and nonresponse” (Richardson et al. 1996).

• Up to 81% of underreporting in validation studies documented by
Bricka/Bhat (2006).

• We use permanently installed road sensors to estimate and adjust
bias due to underreporting in transport survey estimates.
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Data – Survey
• Road Freight Transport Survey of the Netherlands 2015

(nsvy = 34, 828 vehicles).
• Mandatory time-based diary survey with response rate about 90%.
• Each vehicle is in the survey for one week. Respondents must report

all trips and shipments on each day.
• It is expected to find cases of underreporting due to nonresponse

and misreporting by falsely responding that the truck was not used.

Response categories n %
truck used 23,461 67.4
truck not used 5,304 15.2
nonresponse 3,601 10.3
truck not owned 2,462 7.1∑

34,828 100%

Table: Survey response categories
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Data – Sensor

• Weigh-in motion road sensor data of 2015 (nwim = 35, 669, 347).
• Dynamic measurement of the weight for each passing truck.
• Measurements: photograph of front/rear license plate, total weight,

axles pressure, and truck classification.
• Weight of entire unit (truck, trailer, and shipment) measured.
• Result of subtracting truck and trailer weights from entire unit

corresponds to the transported weight, which is equal to the
definition of reported weight in the survey.
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Data – Administrative Data

1 The Dutch vehicle register provides information on technical truck
characteristics.

2 The Dutch enterprise register provides information on characteristics
of the truck owners.

Linking the datasets:
• Survey and Sensor: Linking by combination of license plate and day

as unique identifier.
• Matched data set: Linking by combination of license plate and

quarter as unique identifier.
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Capture-Recapture Method for this Setting
• Capture-recapture methods are used to to estimate and adjust

underreporting in the survey.
• Survey (A) and sensor (B) observations are considered as a two
occasion capture setup.

• Three quantities are derived: A \ B, B \ A, and A ∩ B.
• A \ B is the first capture occasion (survey-only), B \ A is the second

capture occasion (sensor-only), and A ∩ B are the elements captured
twice.

Survey response
Sensor detections reported not reported
recorded A ∩ B B
not recorded A –

Table: Quantities of linked survey and sensor datasets.
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Definitions and Assumptions

• Heterogeneity of the vehicles with respect to capture and recapture
probabilities is modeled through logistic regression and log-linear
models.

• Assumptions: independent data sets, closed population, elements
belong to population, perfect linkage, homogeneous capture
probabilities.

• Six estimators for truck days (D) and transported shipment weights
(W ) are applied, compared, and discussed.

• One truck day is defined as a day that a truck has been on the road
in the Netherlands.
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Estimators

• Survey Estimators:
• SURV : Post-stratified survey estimator
• SURVX : Naive extended survey estimator

• Conditional likelihood estimators
• HUG : Conditioned on the captured elements; heterogeneity in

capture probabilities modelled using covariates; logistic regression
• HUGint : intercept model

• Full likelihood estimators:
• LP: Homogeneous capture probabilities in A and B;

uses A \ B, B \ A, and A ∩ B
• LL: Assumes independent capture probabilities in A and B;

Covariates used to model heterogeneity
• Stepwise selection procedure (based on BIC) to chose covariates to

fit the logit and log-linear models.
• Bootstrap variance estimates for all estimators were computed.
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Results
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Results – Type of transport
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Results – Size of vehicle fleet
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Summary

• All estimators yield larger estimates for truck days and transported
shipment weights than the survey.

• Recommendation to rely on the log-linear model (based on the full
likelihood, takes heterogeneity into account).

• Most likely amount of underestimation in the survey up to 22% for
truck days and 23% for the transported shipment weight.

• In comparison to results in the literature, we observed a moderate
underestimation in the survey.

• Stratification showed larger amounts of underestimation in the
survey for
• own transport (D̂ = 27%, Ŵ = 28%)
• and smaller vehicle fleets (D̂ = 25%, Ŵ = 24%).
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Conclusion

• We demonstrated a method to use big data in official statistics to
estimate bias in survey estimates by combining survey,
administrative, and sensor data using capture-recapture.

• With this technique, we quantified the survey underestimation and
adjusted the survey estimate.

• The capture-recapture technique for survey adjustment introduced
here can be applied whenever survey, administrative, and sensor data
(or any other external big data source) can be linked on a
micro-level using a unique identifier.
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