Combining latent class analysis and multiple imputation to correct for misclassification in combined datasets

Laura Boeschoten

Tilburg University – Statistics Netherlands

18 oktober 2018
1. Introduction
2. MILC
3. Application
4. Extensions
5. Application
6. Summary & Discussion
Starting point: Combined dataset

Multiple sources:
- Administrative sources
 - (Large part of) population
- Surveys
 - Sample of population
- Linked on person level

Different sources sometimes contain the same (categorical) variable
Predefined large cross-tables that meet a number of requirements
Requirement 1
Account for impossible combinations of scores

Problem:
- Sometimes, a combination of scores is observed that is not possible in practice
- Caused by misclassification in one of the variables (De Waal, Pannekoek & Scholtus, 2011)

Solution:
- Incorporate edit restrictions into the LC model

Example:
\[P(\text{Gender} = \text{Male}|\text{Pregnant} = \text{Yes}) = 0 \]
Requirement 2
Numerical consistence over different cross-tables

Problem:
- Sometimes variables are only observed by means of sample surveys
- Weighting leads to inconsistent estimates of the different cross-tables (De Waal, 2014)

Solution:
- Mass imputation
Requirement 3
Incorporate uncertainty into the variance estimates

Problem:
- Missing and conflicting values make us more uncertain about our estimates

Solution:
- Multiple imputation
Summary
Multiple Imputation of Latent Classes (MILC)

Latent Class model
- Variables that measure the same construct as indicators of a latent variable that measures the ‘true scores’
- Edit restrictions

Multiple Imputation
- Consistent estimates
- Uncertainty due to missing and conflicting values
MULTIPLE IMPUTATION OF LATENT CLASSES
MILC

1. Bootstrap
2. LC models
3. Impute
4. Obtain estimates
5. Pool

\(\pi_1 \)
\(\pi_2 \)
\(\pi_m \)
\(\hat{\theta}_1 \)
\(\hat{\theta}_2 \)
\(\hat{\theta}_m \)
\(\bar{\theta} \)
MILC

1. Bootstrap
2. LC models
3. Impute
4. Obtain estimates
5. Pool

\[\pi_1, \pi_2, \ldots, \pi_m \]

\[\hat{\theta}_1, \hat{\theta}_2, \ldots, \hat{\theta}_m \]

\[\bar{\theta} \]
MILC

1. Bootstrap

2. LC models

3. Impute

4. Obtain estimates

5. Pool

\[\pi_1 \rightarrow \hat{\theta}_1 \]

\[\pi_2 \rightarrow \hat{\theta}_2 \]

\[\pi_m \rightarrow \hat{\theta}_m \]
LC model

- Variables measuring the same construct used as indicators of a latent variable
- Number of LC’s = number of categories in indicators
LC MODEL
Assumptions

- Mixture:
 \[P(Y) = \sum_x P(X)P(Y|X) \]

- Local independence
 \[P(Y|X) = \prod_l P(Y_l|X) \]
LC MODEL
Covariates

- Misclassification independent of covariates
- Covariates are free of error
- Edit restrictions are ‘hard edits’:
 \[P(X = 2 | Q = 1) = 0 \]
MILC

\[\pi_1 \rightarrow \ldots \rightarrow \pi_m \]
\[\hat{\theta}_1 \rightarrow \ldots \rightarrow \hat{\theta}_m \rightarrow \bar{\theta} \]
Multiple imputation

Using posteriors

- For every case, one imputation is created using the posterior belonging to the corresponding profile

\[
P(X|Y) = \frac{P(X) \prod_l P(Y_l|X)}{\sum_x P(X) \prod_l P(Y_l|X)}
\]

- This is done for every LC model (belonging to every bootstrap sample)

- Resulting in \(m \) imputations
MILC

1. Bootstrap → \(\pi_1 \) → \(\hat{\theta}_1 \)
2. LC models → \(\pi_2 \) → \(\hat{\theta}_2 \)
3. Impute → \(\pi_m \) → \(\hat{\theta}_m \)
4. Obtain estimates → \(\theta \)
5. Pool

\[\pi_1, \pi_2, \ldots, \pi_m \]
Pooling of the Results
Using the pooling rules defines by Rubin

\[T = \bar{U} + (1 + \frac{1}{m})B \]

- \(T = \) Total variance
- \(\bar{U} = \) ‘Within’ variance (uncertainty about the assigned score)
- \(B = \) ‘Between’ variance (uncertainty about the model)
Quality of the imputations depends on the quality of the data

- Entropy R^2: Score between 0 and 1 indicating how well you can classify based on your observed data

Required quality depends on desired output

Low number of imputations seems sufficient

(Boeschoten, Oberski & De Waal, 2017)
APPLICATION: NUMBER OF SERIOUS ROAD INJURIES PER VEHICLETYPE
Number of serious road injuries per vehicle type in 2013:

- **In total 15,033 serious road injuries**:
 - 12,418 missing
 - 2,615 observed
 - 2,426 observed
 - 14,844 observed
 - 189 missing

- **In both sources**:
 - Police
 - Hospital
Number of serious road injuries per vehicletype in 2013

- Nine categories for vehicletype
- Currently, if the police assigned a score, this is used. Otherwise, the score assigned by the hospital is used
- Vehicletype is classified differently for 30% of the cases
Number of serious road injuries per vehicle type in 2013
Simultaneously impute missing values
By using a quasi-latent variable

- Simultaneously impute the variable ‘region of accident’
- Only measured by police
- restriction ‘a’: ‘region of accident is a perfect indicator of X2.
- If missing: LC model is used, with ‘region of hospital’ as another indicator
EXTENSIONS OF THE METHOD
Extension 1: Longitudinal

- Model to estimate monthly employment rates (Pavlopoulos & Vermunt, 2015)
- Create monthly imputations of employment status
- Investigated and applied in collaboration with ISTAT
Extension 2: Population census

- Comparable to model discussed in application
- Simulate from finite population
 - Different approach for bootstrap
- Many observations; many cells
Extension 3: External covariates

Using three-step methodology

- Estimate the relationship between an imputed latent variable and external covariates (not included in the LC model)
- Apply a correction procedure (ML or BCH)
- Update the imputations with the newly obtained posteriors

(Boeschoten, Oberski, De Waal & Vermunt, 2018) & (Boeschoten, Croon & Oberski, 2018)
Summary

- Quality of the output depends on the quality of the data
- Missing values can be imputed simultaneously
- MILC can easily be adjusted to specific situations
- Covariates can be added at a later time-point
Discussion

- Is there a more flexible alternative for the bootstrap?
 - Gibbs sampler?
- How can we use MILC for other types of errors?
 - Or use it in combination with other types of correction methods?

A.G. De Waal (2014) Consistent estimates for categorical data based on a mix of administrative data sources and surveys *CBS Discussion Paper*

L. Boeschoten, M. Croon & D.L. Oberski (2018) A note on applying the BCH method under linear equality and inequality constraints *Journal of Classification*

Thank you!!

l.boeschoten@tilburguniversity.edu