External and internal quality of Big Data

Beat Hulliger, FHNW School of Business

BigSurv18, 27.10.2018, Barcelona
Introduction

- Experience with three large datasets in relation with surveys
- External quality: timeliness, accessibility, relevance, coverage, comparability, accuracy
- Internal quality: reliability, coherence, completeness
1. Evaluation of pharmacy service

- PMC: Polymedication Check
- Check on compliance and issues with medication
- Offered by pharmacies
- Paid by health insurance
- On a provisional basis

(Hulliger et al., 2017)
Survey

- Survey among all Swiss pharmacies ($N = 1720$)
- Questionnaire on acceptance of PMC: Acceptance and issues of PMC by pharmacists
- Questionnaire on PMC records (if PMC done): View of pharmacists about effect of PMC and about satisfaction of patients
- Sample: $n = 585$ pharmacies ($r = 0.34$), $n = 345$ PMC records
Health Insurance Data

▶ Secondary data from three large health insurance companies, covering 3.5 million patients in 2013 (coverage ≈ 0.44).
▶ Socio-demographic data and medical history data over three years.
▶ Longitudinal analysis of PMC-patients
▶ Quasi-experimental analysis with matched non-PMC patients
▶ Treatment: Persons with PMC
▶ Control: Samples of matched persons not taking the service using socio-demographic and medical history
Health Insurance Data ctd.

- 1’707 PMC-Patients compared with 14’015 Non-PMC Patients
- Medical history data (e.g. every drug with ATC, quantity, price, date etc., and PMC)
- Response: Hospitalisations, Emergencies, Doctor visits, Expenditures for drugs
Lessons learned

▶ Survey of pharmacists
 ▶ Low response rate of survey and missing values: Possible non-response bias.
 ▶ Analysis and interpretation of survey straightforward but only viewpoint of pharmacists (proxy for patients).
 ▶ Pharmacists mixed acceptance of PMC.

▶ Secondary analysis
 ▶ Lack of harmonisation between companies: joint analysis impossible.
 ▶ Coverage of about 44%: possible differences compared with smaller companies.
 ▶ Analysis involved.
 ▶ Significant effect over short period for cost of drugs. Otherwise no clear signal!
2. Imputation of turnover in business census

- Swiss business census 1995 (Hüsler and Müller, 2001)
- 277’331 enterprises
- 21% have missing turnover
- Various methods for the imputation (homogeneous groups, regression, robust variants)
Estimates of total GDP in BCHF:

<table>
<thead>
<tr>
<th></th>
<th>Lowest version</th>
<th>Highest version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-robust methods</td>
<td>550</td>
<td>1450</td>
</tr>
<tr>
<td>Robust methods</td>
<td>620</td>
<td>1040</td>
</tr>
</tbody>
</table>

- Standard error with multiple imputation: 10 BCHF
- Different models in different branches needed.
- Macro comparison with national accounts: All above 1000 BCHF excluded.
- For large data sets the problem of outliers and very skew distributions remains.
Figure: Total turnover vs. tuning constant for robustification

Source: Hüsler and Müller (2001)
3. TV-audience measurement

- Top-set box to register TV-audience.
- About 2000 panel members (households).
- Recruitment, instruction, installation, maintenance.
- Highly sophisticated and detailed calibration to population.
- TV-audience measurement every 30 seconds (channel, persons).
- Analysis spells: day, week, month, trimester, semester.
- Problem: Are small TV-stations well covered by the audience measurement?

(Kuonen and Hulliger, 2013)
TV-audience measurement ctd.

- TV-audience measurement:
 - Big data in time dimension
 - Small survey in household dimension.
- Missing spells of measurements: Big data may help.
- Small area (households) estimation: Big data useless...?
- Small TV-channels: Rare event - Aggregation over time helps
Quality Overview

<table>
<thead>
<tr>
<th>Dimension</th>
<th>PMC Survey</th>
<th>Data</th>
<th>BZ95 Imp.</th>
<th>Mediapulse Panel</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Coverage</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Comparability</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Accuracy</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Timeliness</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Punctuality</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Accessibility/Clarity</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Reliability</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Coherence</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Completeness</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cost</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(1=low, 2=middle, 3=high)
Conclusions

- Large datasets have the same problems of bias as any survey: coverage, non-response, robustness.
- The bigger the data the larger the problems of comparability (definitions).
- Rare events may be captured by big data.
- Triangularisation may shed light on complex phenomena.
- Not the size of data makes the quality but how targeted the data is collected.
Bibliography

