

Advances in modeling attrition The added value of paradata and machine learning algorithms

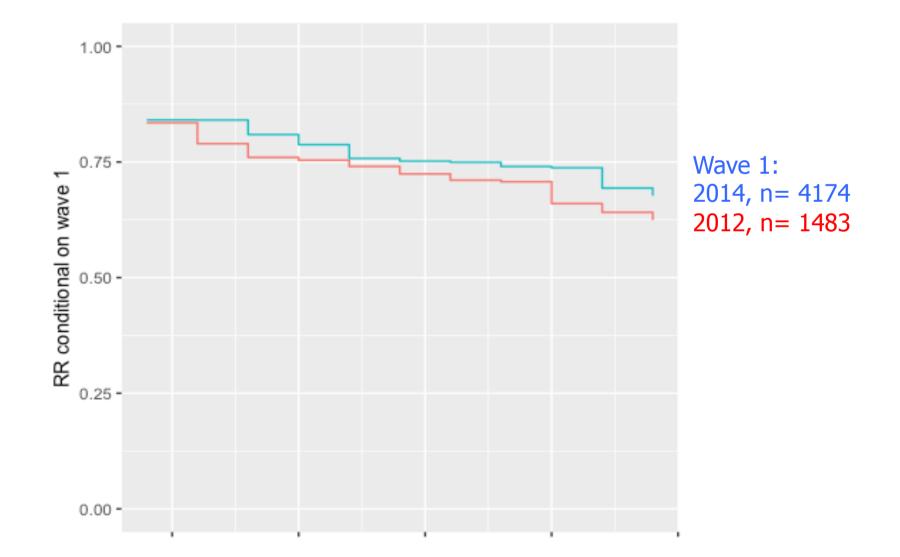
Peter Lugtig (Utrecht University <u>p.lugtig@uu.nl</u>)

Annelies Blom

(University of Mannheim a.blom@uni-mannheim.de

Big Surv conference – 25-27 October, 2018

Attrition in German Internet Panel



Goal of paper – predict attrition

- Existing attrition analyses low predictive power
 - socio-demographic variables
- ♦ 1. Does paradata add something?
 - Survey process variables: Behavior in survey, and underlying attitudes
 - Do machine learning models add something?
- ♦ 2. Do models cross-validate?
 - Do we find the same patterns across waves?
 - Do we find the same patterns across datasets?
- 3. Can we target likely attriters?

About the German Internet Panel

CENTER

- Probability-based online panel
 - Germans between 16 and 75
 - Receive a PC and Internet if necessary
 - Waves bi-monthly

POLITICAL ECONOMY

OF REFORMS | MANNHEIM

- See http://reforms.uni-mannheim.de/internet_panel/home/
- 2012 and 2014 recruitments
 - Fieldwork identical across recruitments

Training model in 2012: traditional vars

Variables	Scale/coding	Constant, or time-varying
Gender	Male=0/female=1	Constant
Age	In years	Constant
Age ²	In years	Constant
Education		Constant
Household Income	In euros	Constant
Employed	No=0, Yes=1	Constant
East/West Germany	West=0/East=1	Constant
Single	No=0, Yes=1	Constant
Living with children	No=0, Yes=1	Constant
Single * age	Interaction term	Constant
Big 5: openness	Factor score	Constant
Big 5: conscientiousness (factor)	Factor score	Constant
Big 5: Extraversion (factor)	Factor score	Constant
Big 5: Agreeableness (factor)	Factor score	Constant
Big 5: neuroticism (factor)	Factor score	Constant
Other HH members part of panel	No=0, Yes=1	
Internet experience		Constant

···+ paradata

Variables	Scale/coding	Constant, or time-varying
Survey evaluation: interesting	1-5	Time-varying
Survey evaluation: relevant	1-5	Time-varying
Survey evaluation: different topics	1-5	Time-varying
Survey evaluation: too long	1-5	Time-varying
Survey evaluation: too difficult	1-5	Time-varying
Survey evaluation: too personal	1-5	Time-varying
Survey evaluation: general	1-5	Time-varying
Whether reminder was sent	1-3	Time-varying
Left negative comment at end of questionnaire	No=0, Yes=1	Time-varying
Received a PC from panel	No=0, Yes=1	Time-varying
Time since last personal contact (via phone)	1-24 months	Time-varying
Time between invitation and survey completion	0-29 days	Time-varying
How incentives are spent	1=cash, 2=amazon voucher, 3=donation to charity	Time-varying (waves 5,8 and 11)
Age of browser version	1-100 months	Constant
Device used	1=PC/laptop, 2=tablet 3=smartphone	Time-varying
Duration of questionnaire	1-2788 minutes	Time-varying
Median duration of questionnaire	1-74 minutes	Constant
Interruption	No=0, Yes=1	Time-varying
Breakoff	No=0, Yes=1	Time-varying

1a. Does paradata help to explain attrition?

RESEARCH CENTER FUNDED BY

DFG

Training data: 2012 recruitment wave-on-wave models (Wald-stats)

	W2	W3	W4	W5	W6	W 7	W8	W9	W10	W11	W12
Stable predictor											
Intercept	7.74	3.97	3.31	2.73	2.94	3.89	1.46	4.71	0.66	2.16	1.10
children							-2.27	-2.05	-2.13		
Education	2.31	2.19									2.10
openness	-2.11										
neuroticism		-2.13									
Internet experience		2.62	2.48	2.00			2.83		2.49		3.32
Benpc		2.58	2.21							-3.11	
agebrowser	2.70										
Paradata											
<pre># days needed to complete survey</pre>	-20.57	-2.12		-3.28	-3.03	-2.07		-3.25		-2.23	
Needed reminder	-3.01	-3.05	-3.74								
Left negative comments				3.08			2.67		3.23	3.62	
Did not complete prev wave	-5.51	-4.46	-5.92	-6.11	-6.87	-6.59	-6.00	-9.59	-9.35	-3.82	-12.54
too long			-2.22		-2.06					-2.80	
too personal								-2.08			-3.35
general				2.20		2.10					2.78
100	0.40	0.40	0.40	0.40	0.40	0.46	0.40	0.40	0.44	0.40	0.45
ICC	0.43	0.40	0.40	0.40	0.40	0.46	0.48	0.43	0.44	0.49	0.45
R-square	0.61	0.51	0.49	0.53	0.52	0.65	0.61	0.63	0.61	0.62	0.64

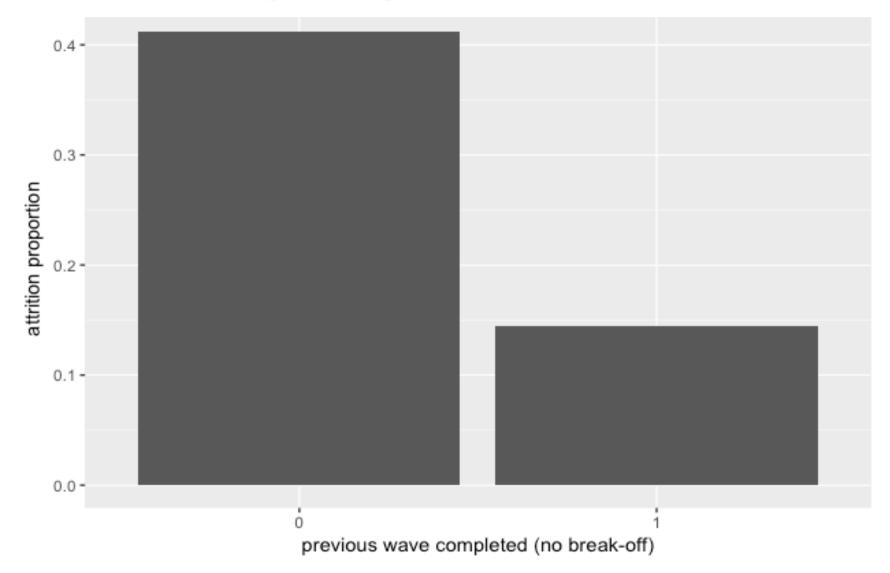
How does paradata drive attrition?

DEG

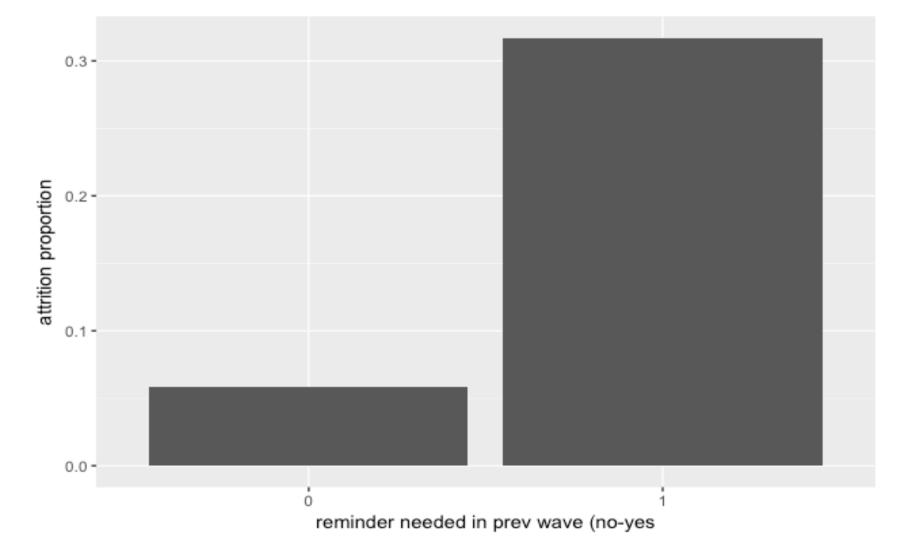
POLITICAL ECONOMY OF REFORMS | SFB 884 MANNHEIM

Examples from wave 3

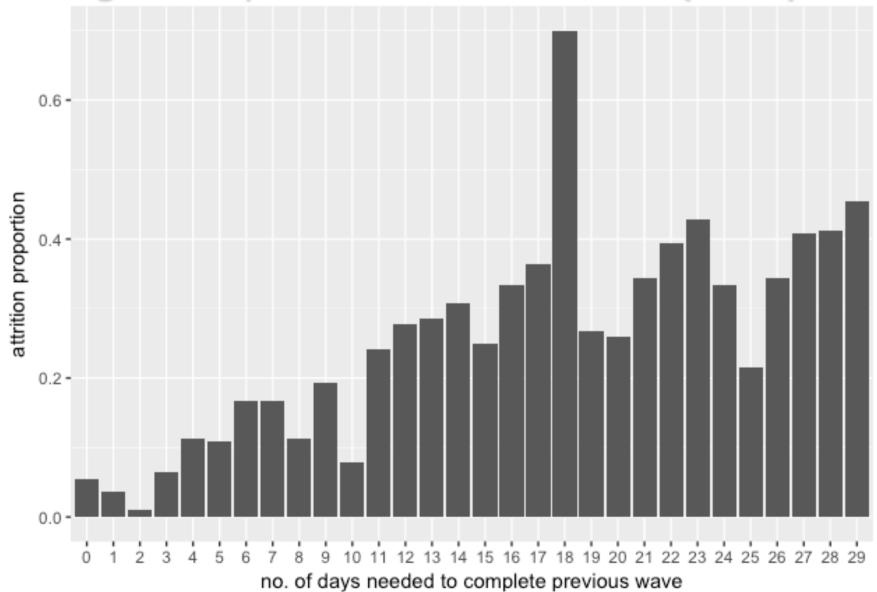
People who complete the prev wave at lower risk (2012)



Reminders have big effect on attrition in next wave (2012)

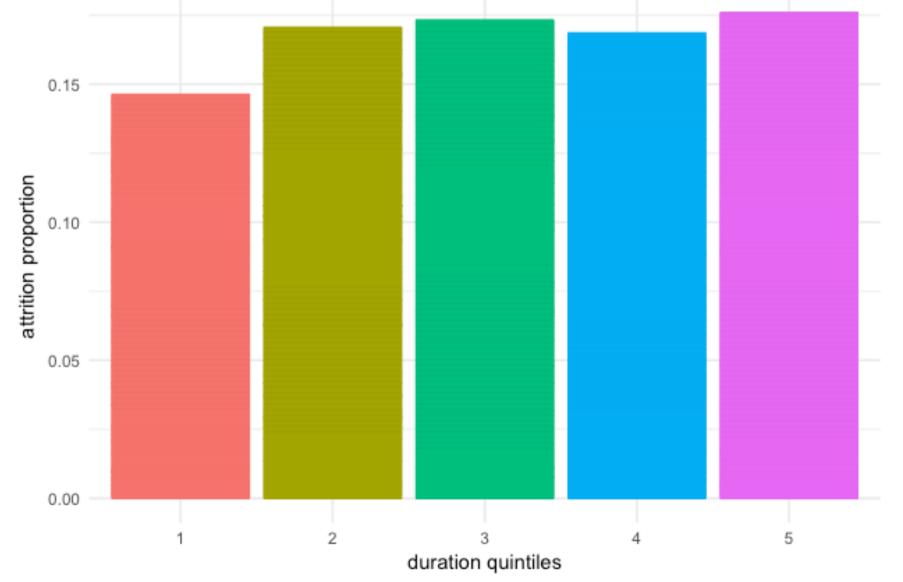


Higher attrition for respondents who wait longer the previous wave to start (2012)



15

5% difference in attrition rates between slowest and fastest respondents



The strongest predictors in 2012 are paradata

- Days needed to complete survey after invitation in previous wave
- Needed a reminder in previous wave
- Break-off in previous wave
- Duration of response (in min.) of previous wave
- Median duration over course of 12 waves
- Paradata can predict attrition
- And predictors are largely consistent across waves

1b. Do machine-learning models add something?

RESEARCH CENTER FUNDED BY

DFG

Can we get more from Machine Learning? Here: a CART for wave 3 - 2012

```
[1] root
 [2] reminder_w2 <= 0
     [3] prev_w2 <= 0: 1 (n = 47, err = 25.5%)
 [ [4] prev_w2 > 0
       [5] daypass_w2 <= 3: 1 (n = 566, err = 2.5\%)
       [6] daypass_w2 > 3: 1 (n = 258, err = 9.7\%)
 [7] reminder_w2 > 0
     [8] prev_w2 <= 0: 0 (n = 67, err = 47.8%)
  [9] prev_w2 > 0
    [10] medianduration \leq 3
 | | [11] daypass_w2 <= 20: 1 (n = 209, err = 29.2%)
 | | [12] daypass_w2 > 20: 1 (n = 121, err = 44.6%)
 | [13] medianduration > 3
  | | [14] duration2 <= 1: 0 (n = 17, err = 41.2%)</pre>
          [15] duration 2 > 1: 1 (n = 198, err = 17.2%)
```

Can we get more from Machine Learning? Here: a CART for wave 3 - 2012

Translation

- No reminder, previous wave not completed
- No reminder, previous wave completed, <3 days
- No reminder, previous wave completed, > 3 days -> 10% attrition -
- Reminder, previous wave not completed -
- Reminder, previous wave completed, <20 days generally fast respondents
- Reminder, previous wave completed, 20 days generally fast respondents,
- Reminder, previous wave completed, generally slow respondents, now fast
- Reminder, previous wave completed, generally slow respondents, now not fast

- -> 25% chance attrition
- -> 2% atrition
- -> 52% attrition
 - -> 30% attrition
 - -> 45% attrition
 - -> 59% attrition
 - -> 17% attrition

There appear to be some complex interactions

2. Do models cross-validate?

RESEARCH CENTER FUNDED BY

DFG

Do models cross-validate?

- Across waves yes
- Across datasets use 2012 and 2014 data
 - 1. Use model from training data (2012)
 - » Logistic regression
 - » Random Forest
 - 2. hold all predictions constant (regression coef, splits)

3. Predict 2014 outcome with 2014 covariates and 2012 coefficients

4. Validate against true outcomes in 2014

The model does cross-validate

◆ Predicive accuracy is around 80%

	Prediction model	2012 - Train data	2014 - test data
Wave 3	Logistic Regression	84	84
Wave 6	Logistic Regression	78	80
Wave 9	Logistic Regression	81	77
Wave 3	Random Forest	81	86
Wave 6	Random Forest	80	79
Wave 9	Random Forest	84	78

Where are we?

1. Paradata drives attrition

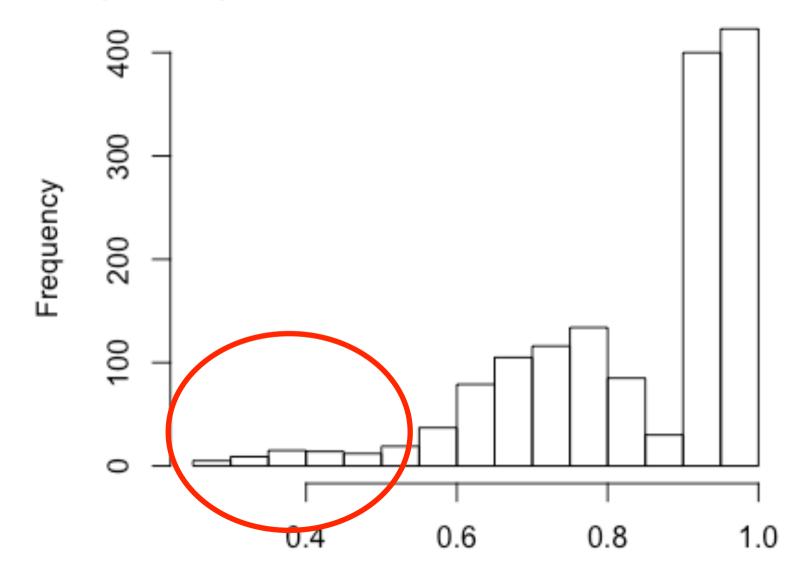
- Large effects of single paradata variables
- 2. Do models cross-validate?
 - Yes, across waves
 - Yes, across datasets
- 3. Can we target likely attriters?

3. Can we identify likely attriters?

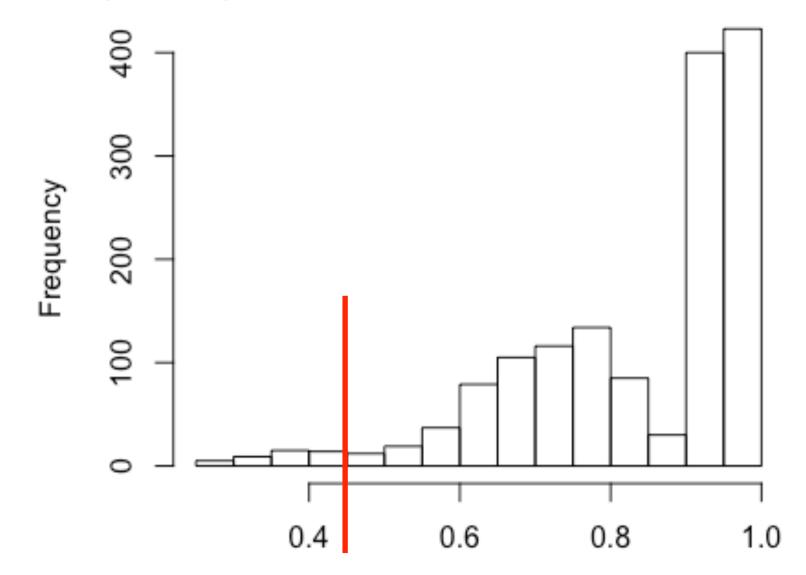
DESEADCH

DFG

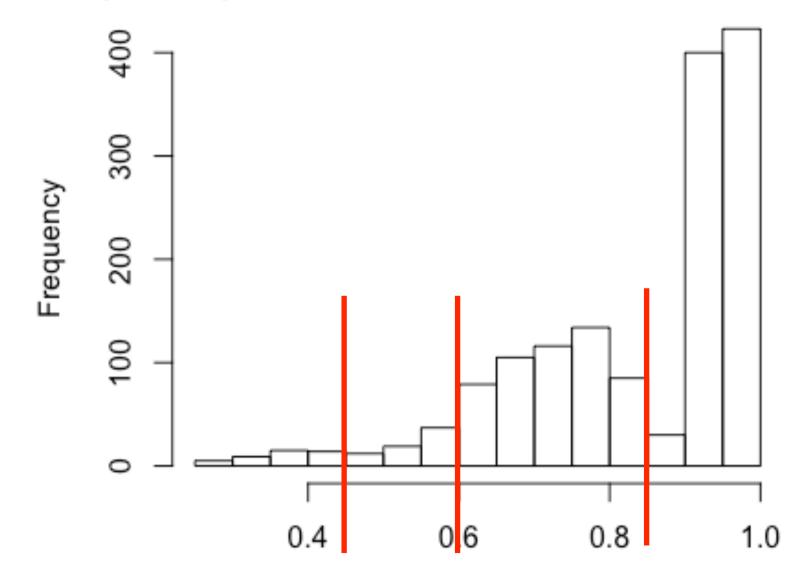
Attrition is hard to predict Propensity scores for wave 3



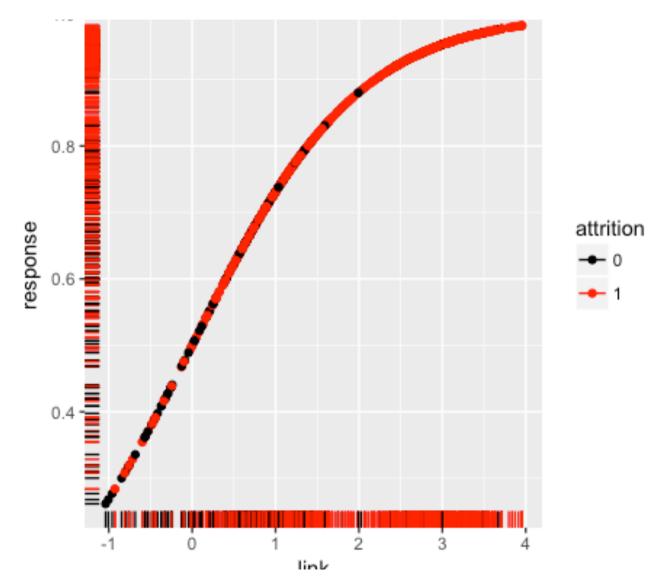
Whom to target? Propensity scores for wave 3



Whom to target? Propensity scores for wave 3



Choosing whom to target... ROC curve – wave 3 attrition for log regression



Classification problem in practice – wave 3

0.5 cutoff Logistic model	True attrition	True stay
Model predicts attrition	1%	1%
Model predicts stay	11%	86%

0.5 cutoff Random Forest	True attrition	True stay
Model predicts attrition	1%	1%
Model predicts stay	12%	86%

0.7 cutoff Logistic model	True attrition	True stay
Model predicts attrition	4%	9%
Model predicts stay	9%	78%

0.7 cutoff Random Forest	True attrition	True stay
Model predicts attrition	2%	3%
Model predicts stay	11%	84%

Conclusions – It's the process!

- Paradata helps to explain attrition at next wave
 - Large effects of single variables
 - Accuracy about 80%
 - Cross-validates across waves
 - And across new datasets
- Best predictors are about the survey experience
 - previous wave breakoff
 - Time between invitation and completion
 - Reminder

POLITICAL ECONOMY OF REFORMS | SFB 884 MANNHEIM

- (Median) duration
- Predicting who is likely to attrite difficult.

Next steps

POLITICAL ECONOMY

OF REFORMS | MANNHEIM

- Easy to identify those who will not attrite

CENTER

- Harder to identify those who attrite
- Target one variable or combinations?
 - previous wave breakoff
 - Time between invitation and completion
 - Needed reminder
 - (Median) duration
 - Combinations (using Machine Learning models)
 - » Reminders + long durations
 - » Reminders + not completed prev. wave

Thank you!

- Peter Lugtig
 - P.lugtig@uu.nl
 - www.peterlugtig.com

RESEARCH CENTER FUNDED BY

- Annelies Blom
 - blom@uni-mannheim.de

