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Attrition in German Internet Panel  

Wave 1: 
2014, n= 4174 
2012, n= 1483 
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Goal of paper – predict attrition 

◆  Existing attrition analyses low predictive power  
–  socio-demographic variables  

◆  1. Does paradata add something? 
–  Survey process variables: Behavior in survey, and 

underlying attitudes 
–  Do machine learning models add something? 

◆  2. Do models cross-validate? 
–  Do we find the same patterns across waves? 
–  Do we find the same patterns across datasets? 

◆  3. Can we target likely attriters? 
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About the German Internet Panel 

◆  Probability-based online panel 
–  Germans between 16 and 75 
–  Receive a PC and Internet if necessary 
–  Waves bi-monthly 
–  See http://reforms.uni-mannheim.de/internet_panel/home/ 

◆  2012 and 2014 recruitments 
–  Fieldwork identical across recruitments  
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Training model in 2012: traditional vars 
Variables	 Scale/coding	 Constant, or 

time-varying	
 	  	  	
Gender	 Male=0/female=1	 Constant	
Age	 In years	 Constant	
Age2	 In years	 Constant	
Education	  	 Constant	
Household Income	 In euros	 Constant	
Employed	 No=0, Yes=1	 Constant	
East/West Germany	 West=0/East=1	 Constant	
Single	 No=0, Yes=1	 Constant	
Living with children	 No=0, Yes=1	 Constant	
Single * age 	 Interaction term	 Constant	
Big 5: openness 	 Factor score	 Constant	
Big 5: conscientiousness (factor)	 Factor score	 Constant	
Big 5: Extraversion (factor)	 Factor score	 Constant	
Big 5: Agreeableness (factor)	 Factor score	 Constant	
Big 5: neuroticism (factor)	 Factor score	 Constant	
Other HH members part of panel	 No=0, Yes=1	  	
Internet experience	  	 Constant	
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…+ paradata 
Variables	 Scale/coding	 Constant, or time-varying	

Survey evaluation: interesting	 1-5	 Time-varying	
Survey evaluation: relevant	 1-5	 Time-varying	
Survey evaluation: different topics	 1-5	 Time-varying	
Survey evaluation: too long	 1-5	 Time-varying	
Survey evaluation: too difficult	 1-5	 Time-varying	
Survey evaluation: too personal	 1-5	 Time-varying	
Survey evaluation: general	 1-5	 Time-varying	
Whether reminder was sent	 1-3 	 Time-varying	
Left negative comment at end of 
questionnaire	

No=0, Yes=1	 Time-varying	

Received a PC from panel	 No=0, Yes=1	 Time-varying	
Time since last personal contact (via 
phone)	

1-24 months	 Time-varying	

Time between invitation and survey 
completion	

0-29 days	 Time-varying	

How incentives are spent	 1=cash, 2=amazon voucher, 
3=donation to charity	

Time-varying  
(waves	5,8	and	11)	

Age of browser version	 1-100 months	 Constant	
Device used	 1=PC/laptop, 2=tablet 

3=smartphone	
 Time-varying	

Duration of questionnaire	 1-2788 minutes	 Time-varying	
Median duration of questionnaire	 1-74 minutes	 Constant	
Interruption	 No=0, Yes=1	 Time-varying	
Breakoff	 No=0, Yes=1	 Time-varying	
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1a. Does paradata help to 
explain attrition? 
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Training data: 2012 recruitment 
wave-on-wave models (Wald-stats) 

 	 W2	 W3	 W4	 W5	 W6	 W7	 W8	 W9	 W10	 W11	 W12	
Stable predictor	
Intercept	 7.74	 3.97	 3.31	 2.73	 2.94	 3.89	 1.46	 4.71	 0.66	 2.16	 1.10	
children	 -2.27	 -2.05	 -2.13	
Education	 2.31	 2.19	 2.10	
openness	 -2.11	
neuroticism	 -2.13	
Internet 
experience	

2.62	 2.48	 2.00	 2.83	 2.49	 3.32	

Benpc	 2.58	 2.21	 -3.11	
agebrowser	 2.70	
Paradata	  	  	  	  	  	  	  	  	  	  	  	
# days needed to 
complete survey	

-20.57	 -2.12	 -3.28	 -3.03	 -2.07	 -3.25	 -2.23	

Needed  reminder 	 -3.01	 -3.05	 -3.74	
Left negative 
comments	

3.08	 2.67	 3.23	 3.62	

Did not complete 
prev wave 	

-5.51	 -4.46	 -5.92	 -6.11	 -6.87	 -6.59	 -6.00	 -9.59	 -9.35	 -3.82	 -12.54	

too long	 -2.22	 -2.06	 -2.80	
too personal	 -2.08	 -3.35	
general	 2.20	 2.10	 2.78	
 	  	  	  	  	  	  	  	  	  	  	  	
ICC	 0.43	 0.40	 0.40	 0.40	 0.40	 0.46	 0.48	 0.43	 0.44	 0.49	 0.45	
R-square	 0.61	 0.51	 0.49	 0.53	 0.52	 0.65	 0.61	 0.63	 0.61	 0.62	 0.64	
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How does paradata drive 
attrition? 

 
Examples from wave 3 
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People who complete the prev wave at 
lower risk (2012) 



14 

Reminders have big effect on attrition in 
next wave (2012) 
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Higher attrition for respondents who wait 
longer the previous wave to start (2012) 
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5% difference in attrition rates between 
slowest and fastest respondents  
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The strongest predictors in 2012 are 
paradata 

◆  Days needed to complete survey after invitation in 
previous wave 

◆  Needed a reminder in previous wave 
◆  Break-off in previous wave 
◆  Duration of response (in min.) of previous wave 
◆  Median duration over course of 12 waves 
 
◆  Paradata can predict attrition 
◆  And predictors are largely consistent across waves 
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1b. Do machine-learning 
models add something? 
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Can we get more from Machine Learning? 
Here: a CART for wave 3 - 2012 

Translation 
-  No reminder, previous wave not completed  -> 25% chance attrition 
-  No reminder, previous wave completed, <3 days  ->  2% atrition 
-  No reminder, previous wave completed, > 3 days  -> 10% attrition 
-  Reminder, previous wave not completed   -> 52% attrition 
-  Reminder, previous wave completed, fast response, -> 30% attrition 

  <20 days   
-  - Reminder, previous wave completed, fast response,-> 45% attrition 

  >20 days 

[1] root 
|   [2] reminder_w2 <= 0 
|   |   [3] prev_w2 <= 0: 1 (n = 47, err = 25.5%) 
|   |   [4] prev_w2 > 0 
|   |   |   [5] daypass_w2 <= 3: 1 (n = 566, err = 2.5%) 
|   |   |   [6] daypass_w2 > 3: 1 (n = 258, err = 9.7%) 
|   [7] reminder_w2 > 0 
|   |   [8] prev_w2 <= 0: 0 (n = 67, err = 47.8%) 
|   |   [9] prev_w2 > 0 
|   |   |   [10] medianduration <= 3 
|   |   |   |   [11] daypass_w2 <= 20: 1 (n = 209, err = 29.2%) 
|   |   |   |   [12] daypass_w2 > 20: 1 (n = 121, err = 44.6%) 
|   |   |   [13] medianduration > 3 
|   |   |   |   [14] duration2 <= 1: 0 (n = 17, err = 41.2%) 
|   |   |   |   [15] duration2 > 1: 1 (n = 198, err = 17.2%) 
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Can we get more from Machine Learning? 
Here: a CART for wave 3 - 2012 

Translation 
-  No reminder, previous wave not completed  -> 25% chance attrition 
-  No reminder, previous wave completed, <3 days  ->  2% atrition 
-  No reminder, previous wave completed, > 3 days  -> 10% attrition 
-  Reminder, previous wave not completed   -> 52% attrition 
-  Reminder, previous wave completed, <20 days  -> 30% attrition 

  generally fast respondents  
-  Reminder, previous wave completed, 20 days  -> 45% attrition 

 generally fast respondents,   
-  Reminder, previous wave completed,   -> 59% attrition 

 generally slow respondents, now fast 
- Reminder, previous wave completed,   -> 17% attrition 

 generally slow respondents, now not fast 

 
There appear to be some complex interactions 
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2. Do models cross-validate? 
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Do models cross-validate? 

◆  Across waves - yes 
◆  Across datasets – use 2012 and 2014 data 

 1. Use model from training data (2012) 
»  Logistic regression 
»  Random Forest 

 2. hold all predictions constant (regression coef, splits) 
 3. Predict 2014 outcome with 2014 covariates and 2012 
 coefficients 
 4. Validate against true outcomes in 2014 
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The model does cross-validate 

◆  Predicive accuracy is around 80% 
Prediction model 2012 - Train data 2014 - test data 

Wave 3 Logistic Regression 84 84 

Wave 6 Logistic Regression 78 80 

Wave 9 Logistic Regression 
 

81 77 

Wave 3 Random Forest 81 86 

Wave 6 Random Forest 80 79 

Wave 9 Random Forest 84 78 



Where are we? 

1. Paradata drives attrition 
• Large effects of single paradata variables 

2. Do models cross-validate? 
• Yes, across waves 
• Yes, across datasets  

3. Can we target likely attriters? 
 



3. Can we identify likely 
attriters? 

 
 



Attrition is hard to predict 
Propensity scores for wave 3 



Whom to target? 
Propensity scores for wave 3 



Whom to target? 
Propensity scores for wave 3 



Choosing whom to target… 
ROC curve – wave 3 attrition for log regression 



Classification problem in practice – wave 3 

0.7	cutoff	
Logistic	model	

True	
attrition	

True	stay	

Model	predicts	
attrition	

4%	 9%	

Model	predicts	
stay	

9%	 78%	

0.5	cutoff	
Logistic	model	

True	
attrition	

True	stay	

Model	predicts	
attrition	

1%	 1%	

Model	predicts	
stay	

11%	 86%	

0.7	cutoff	
Random	Forest	

True	
attrition	

True	stay	

Model	predicts	
attrition	

2%	 3%	

Model	predicts	
stay	

11%	 84%	

0.5	cutoff	
Random	Forest	

True	
attrition	

True	stay	

Model	predicts	
attrition	

1%	 1%	

Model	predicts	
stay	

12%	 86%	
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Conclusions – It’s the process! 

◆  Paradata helps to explain attrition at next wave 
–  Large effects of single variables 
–  Accuracy about 80% 
–  Cross-validates across waves 
–  And across new datasets 

◆  Best predictors are about the survey experience 
–  previous wave breakoff    
–  Time between invitation and completion   
–  Reminder     
–  (Median) duration 

◆  Predicting who is likely to attrite difficult.  
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Next steps 

◆  Do an intervention on paradata 
–  Easy to identify those who will not attrite 
–  Harder to identify those who attrite 

◆  Target one variable or combinations? 
–  previous wave breakoff     
–  Time between invitation and completion    
–  Needed reminder     
–  (Median) duration 
–  Combinations (using Machine Learning models)   

»  Reminders + long durations 
»  Reminders + not completed prev. wave 
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Thank you! 

◆  Peter Lugtig 
–  P.lugtig@uu.nl 
–  www.peterlugtig.com 

◆  Annelies Blom 
–  blom@uni-mannheim.de 


