

Facilitating Survey Sampling in Low- and Middle-Income Contexts Through Satellite Maps and Basic Mobile Computing Technology

6th European Survey Association Conference Survey Research in Developing Countries Session 3

Marco Haenssgen Oxford Department of Int'l Development

OXFORD DEPARTMENT OF INTERNATIONAL DEVELOPMENT

16 July 2015

Contents

Approaches to Survey Sampling

Setting and Challenges

Process Description

Discussion

- Benefits
- Locational, technical, logistical prerequisites
- Challenges

Conclusion

APPROACHES TO SURVEY SAMPLING

ICT in Survey Research

Traditional Approaches

In absence of registers as sampling frames, rural household surveys in LMICs are often based on random walk procedures or household listing. For example, health surveys in LMICs:

First-level cluster selection

Based on census data, proportional to population size

Second-level household selection

- Household listing and mapping
 - Select segments and list every inhabited structure
 - Choose starting point and interval

Random walk

- Drop pin to select starting household
- Choose interval and follow road, "spin the bottle" at each intersection

Satellite-Aided Approaches

Satellite-based approaches are gradually emerging in survey research.

Cluster random sampling

- Wampler et al. (2013) in Haiti
- Google Earth → ArcMap → Excel → GPS units

Simple random sampling

- Escamilla et al. (2014) in Malawi; Shannon et al. (2012) in Lebanon
- GPS → GIS → Google Earth → Digipoint 2 → GIS → Hawth's Tools → GPS (Escamilla et al., 2014)

Selection of starting point for random walk

- Galway et al. (2012) in Iraq; Flynn et al. (2013) in Canada
- GIS \rightarrow Google Earth / Maps \rightarrow Printed maps (Galway et al., 2012)

Other (Disease and programme surveillance)

- Chang et al. (2009), Gammino et al. (2014), Morland & Evenson (2009)
- GPS → Google Maps / GIS → GPS

Satellite-Aided Approaches

Researchers have started to incorporate satellite-based approaches in survey research

Wampler et al. (2013) I Escamilla et al. (2014) I Galway et al. (2012) Gammino et al. (2014)

ICT in Survey Research

Issues

Traditional Approaches

- Time and money intensive
- Segmentation to manage workload
- Clustering, high street bias in random walk
- Verification problems

Satellite-Aided Approaches

- Specialised (though open-source) software/s
- Professional equipment
- Spatial considerations focus mainly on catchment
- Random walk issues remain

SETTING AND CHALLENGES

ICT in Survey Research

Setting and Challenges

Survey Data Collection

Survey data to be collected from 16 villages each in Rajasthan and Gansu.

Wikimedia Commons (2013)

ICT in Survey Research

Setting and Challenges

Data Collection in Rajasthan

Rajasthani sample selection was based on 3-stage stratified cluster random sampling, using mostly conventional methods.

- Eligibility: Ordinary village resident (>6m), 18 years and above
- 4 steps in sample selection process
 - Purposive selection of representative sub-districts in two districts
 - Random selection of 16 villages in these districts
 - Random selection of 25 households in each village through interval sampling
 - Random selection of one respondent in each household
- 60-minute questionnaires + PSU checklist
- Team of 6 fieldworkers and two supervisors

Setting and Challenges

Challenges in Gansu

Owing to administrative and resource constraints, the process could not be replicated in Gansu.

Administrative Challenges

- Absence of village population data (village name register from census)
- Absence of geographical village information

Resource challenges

- Higher labour and transportation costs
- Limited team time per village

PROCESS DESCRIPTION

ICT in Survey Research

Village Selection

Satellite maps were used to extract village locations for spatial stratification.

- 1,736 sites in eight sub-districts in register
- Locate villages in Google Maps using Chinese names
- Manually extract coordinates into Microsoft Excel
- Calculate distance to assigned and nearest township
- Drop or reclassify outliers
- 1,553 villages in sampling frame, 16 plus 32 replacements drawn

Townships: 7		County	Latitude	Longitude	Distance	Distance	Dist. to Nearest
Village Name		Name	(google)	(google)	to County	to Town	Township (km)
石青村委会	shí qīng cūn v	皋兰县	36.73834	103.7491	48.68	28.15	23.68
白坡村委会	bái pō cūn wěi	i皋兰县	36.78682	103.8803	51.13	30.55	30.55
大横村委会	dà héng cũn wà	皋兰县	36.66784	103.8344	38.84	18.01	16.95
三和村委会	sān hé cũn wěi	皋兰县	36.55608	103.8584	26.29	5.65	5.65

ICT in Survey Research

Household Selection

High-resolution aerial maps of selected villages were extracted to build village-level sampling frames.

- High-resolution village maps on Google Maps or Bing Maps
- Screen-cap highest-resolution maps (up to 1:670), 1km catchment
- Paste screenshots into Microsoft PowerPoint
- Assemble complete high-resolution area map (5-40 individual maps)
- Village maps contained up to 950 households (380 on average)

Household Selection

Google Inc. (2014), 2014 map data from Google, DigitalGlobe

ICT in Survey Research

Household Selection

Village-level sampling frames were built through complete enumeration of identifiable housing structures.

- Homogeneous housing conditions, absence of apartment buildings
- Segment village maps to ensure spatial representativeness
- Number housing structures consecutively in PowerPoint
- Assign placeholders for unidentified structures
- Interval-sample 25 plus 50 replacement households based on number of structures per segment

Implementation and Monitoring

Not only sample selection but also implementation logistics benefitted from digital aides.

- Satellite maps facilitated upfront planning
 - Village approach via chartered unchartered roads using Bing/Here Maps
 - Plan deployment/drop-off and pick-up
 - Assign investigators according to fitness in difficult terrain
- Village maps to facilitate field investigator work
 - Pre-label questionnaires with assigned households
 - Facilitate household location for fieldworkers (provided training, compass)
 - Field investigators to record GPS coordinates using cheap (£18) handhelds
 - Supervisors using geo-coordinates to verify correct households

DISCUSSION

ICT in Survey Research

Benefits: Financial

Digital aides enabled low-cost sampling and streamlined logistics.

- Savings ("realistic" scenario):
 - Reduced travel, investigator work, insurance, researcher allowance
 - Saved 25% of main survey time, 80 labour days
 - Total savings: £4,300
- Expenses
 - Actual: Smartphone, printing, network charges
 - Optional: Touchscreen laptop, labour, GPS units
 - Total expenditures: £170 to £2,000
- Bottom line: Savings of £2,300 to £4,100

Benefits: Methodological

ICT-aided sampling and implementation can also improve survey quality.

- Complete listing, even for spatially marginalised households
- Spatial representativeness (superimposed grids)
- Less clustering, thereby improving effective sample size
- Stronger adherence to pre-selected households

Benefits: Methodological

In absence of spatial autocorrelation, spatial stratification / segmentation is at least as accurate as simple random sampling.

Delmelle (2009: 186-189) ICT in Survey Research

Requirements

Researchers need to meet specific conditions to realise these benefits.

Locational requirements

- Up-to-date, high resolution imagery
- Identifiable, consistent, stable living conditions
- Local knowledge of field sites
- Economic viability

Technical requirements

- Off-the-shelf ICT
- Lowest-cost GPS units, compasses
- 2G connectivity

Logistical requirements

- Training on map reading
- Detailed team instructions prior to village visit
- Information from local leaders

Challenges

Reliance on technical aides can have methodological implications.

Village selection

- Reliance on incomplete village registers can curtail sampling frame
- Insensitivity of population size produces bias towards smaller villages
- Remedies: Visual inspection of maps, expand catchment areas, ex-post weighting

Household selection

- Abandoned and shared housing units can influence sampling interval (223 locked households, up to 29 per village)
- Manual household listing can create trust that is forgone in ICT-aided sampling (38 refusals, up to 4 per village)
- Remedies: on-the-spot updates of village maps, revisits

CONCLUSION

ICT in Survey Research

Conclusion

Applicable in contexts that have

- Lack of administrative data for sampling frame
- High survey costs
- Homogeneous and identifiable dwelling units
- Quality satellite maps (Google, Bing/Here, Apple, ...?)
- Transparent, efficient, low-cost alternative to random walk and household listing
- Saved £4,000, making survey feasible
- No specialised equipment / skills required
- Suitable for student researchers and resource-constrained studies

Thank you.

Questions?

marco.haenssgen@hertford.ox.ac.uk

ICT in Survey Research