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ABSTRACT

Latent variable models are common in the social sciences - to measure ideal

points of U.S. Senators, countries’ “level of democracy” or the relationships

between latent attitudes and values across countries, for instance. Because

differences in measurement parameters can be confounded with substan-

tively interesting differences, measurement invariance or “equivalence” is

a prerequisite for cross-group comparisons of parameters of interest. The

practice of “invariance testing” attempts to rule out confounding by testing

equality-constrained models. However, some tests may be rejected due to

slight violations of invariance that are inconsequential for the comparison

of interest. Conversely, even when the invariance hypothesis fits “closely”,

measurement inequivalence may still bias comparisons of interest substan-

tially.

This article explores an alternative approach: evaluating directly whether

parameters of interest are affected by possibly misspecified measurement in-

variance restrictions. A sensitivity measure, the ”EPC-interest”, is shown

to provide valuable insight in whether groups can be considered equivalent
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for the substantive comparison at hand. A simulation study demonstrates

that the EPC-interest provides accurate estimates of the change in param-

eters of interest that would occur if particular measurement invariance re-

strictions were freed. We demonstrate the EPC-interest with two examples

from the literature: the measurement of Democracy, and the relationship

between values and anti-immigration attitudes.

R code and data for the examples discussed in this article are provided in

the electronic appendix.

1. INTRODUCTION

Latent variable models are a common tool across the social sciences to model unob-

served traits (Lord and Novick, 1968; Bollen, 1989; Bartholomew, Knott and Moustaki,

2011). In political science, for example, Jackman (2001) and Clinton, Jackman and

Rivers (2004) applied ideal point models to roll calls in the U.S. Supreme Court, Senate,

and House; Treier and Jackman (2008) and Armstrong (2011) discussed measurement

models for the level of democracy based on the Polity and Freedom House indicators;

and Davidov (2009) studied the measurement of national identity and constructive pa-

triotism in the cross-national ISSP survey. The final goal of such analyses is often a

comparison of estimated levels of the latent variable across groups; for instance, time

series analyses of the level of democracy (Armstrong, 2011), a regression of risk of civil

war on the level of democracy (Treier and Jackman, 2008), or a comparison across

34 countries of patriotism and nationalism (Davidov, 2009). Comparing relationships

between latent variables may also be of interest - Davidov et al. (2008), for example,

compared the regression coefficients between “human values” (Schwartz and Bilsky,

2



1987) and latent anti-immigration attitudes across 19 European countries.

Comparisons of latent variable means, relationships, or other parameters of inter-

est are only valid, however, when the measurement parameters are equal across the

groups to be compared (e.g. Steenkamp and Baumgartner, 1998). Otherwise, between-

group differences in the parameters of interest may be confounded with differences in

the measurement parameters (Oberski, 2012). In the literature on structural equation

modeling (SEM), this observation is known as the requirement of “measurement equiv-

alence” or “invariance” (Meredith, 1993); psychometricians use the terms “item bias”,

also known as “differential item functioning” or DIF (Mellenbergh, 1989); and in the

measurement error literature the corresponding term is “differential measurement er-

ror” (Carroll et al., 2006). We focus on structural equation modeling – a general class

of linear latent variable models that has given rise to a large literature on measurement

invariance testing (for reviews, see Millsap and Everson, 1993; Vandenberg and Lance,

2000; Schmitt and Kuljanin, 2008).

Invariance testing in SEM proceeds by comparing a model with cross-group equal-

ity restrictions on the measurement parameters to a model in which some or all of the

measurement parameters are allowed to vary over groups. This comparison may take

the form of a chi-square difference test (Steenkamp and Baumgartner, 1998; French

and Finch, 2006), of a test of “close fit” involving SEM fit measures such as CFI

and RMSEA (Cheung and Rensvold, 2002; Chen, 2007), or of the examination of ex-

pected parameter changes (EPC) and modification indices (MI) (Byrne, Shavelson and

Muthén, 1989; Yoon and Millsap, 2007). A commonly recognized problem is that the

chi-square difference test may be very sensitive to “small” differences in measurement

parameters that do not substantially change the parameters of interest. Indeed this

has been one of the driving arguments behind the development of “close fit” measures

such as CFI and RMSEA (Hu and Bentler, 1998). The converse possibility also ex-
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ists, however: both the chi-square difference test and (differences in) fit measures such

as CFI and RMSEA may indicate a good model fit even though the “closely” fitting

between-group differences in measurement parameters produce large biases in the pa-

rameters of interest (Kolenikov, 2009; Saris, Satorra and Van der Veld, 2009). As a

partial solution, Saris, Satorra and Van der Veld (2009) suggested examining the MI,

EPC, and power of the MI test. However, unless the power is high and no modification

indices statistically significant, similar problems occur with this procedure: the MI and

EPC may indicate a “substantial misspecification”, i.e. between-group differences in

measurement parameters, even though this difference does not produce any substantial

bias in the parameters of interest - and vice versa. Therefore, when invariance testing

indicates violations of invariance, such violations do not necessarily lead to substan-

tial biases in the parameters of interest. Moreover, even when fit measures indicate

that measurement invariance restrictions yield a “close fit”, there may still be substan-

tial bias in the parameters of interest such as differences in latent factor means and

relationships, threatening the validity of the comparison.

In this article, we supplement the investigation of invariance testing in SEM with a

sensitivity analysis. We suggest using the “EPC-interest” for this purpose: a measure

of the expected change in the parameter of interest when freeing a particular equality

restriction (Satorra, 1989; Bentler and Chou, 1992). Given parameters of interest to

be compared across groups, the EPC-interest allows the researcher to establish more

directly whether such a comparison is valid.

The EPC-interest is similar to the existing EPC measures in SEM in that it can

be applied to models involving equality restrictions, and also estimates the expected

change in a parameter after freeing each restriction. However, the EPC estimates

change in the restricted measurement parameter itself, while the EPC-interest esti-

mates change in the parameter(s) of interest. In this sense, it evaluates the sensitivity
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of the substantive model of interest to the invariance restrictions, and is similar in spirit

to the approach for causal inference discussed by Imai and Yamamoto (2010, pp. 552-

3). The EPC-interest approach differs somewhat from the purely derivative-oriented

approach to sensitivity analysis common in econometrics (Magnus and Vasnev, 2007,

p. 168) and applied to SEM by Yuan, Marshall and Bentler (2003): both direction and

magnitude of the misspecification are combined into the same measure here. A contin-

gent hypothesis test of no change in the parameters of interest is, however, equivalent

to classic econometric specification tests (Yuan, Marshall and Bentler, 2003; Hausman,

1978). Changes in parameters of interest for specific combinations of measurement and

structural models were derived by Millsap (1997), Millsap and Kwok (2004), Millsap

(2007), and Meuleman (2012). The EPC-interest can be seen as a general method

of obtaining such results applicable to all structural equation models with equality-

constrained measurement parameters.

The following section defines the EPC-interest for structural equation models with

equality constraints. Subsequently, a simulation study evaluates the finite sample per-

formance of the EPC-interest as an estimate of the shift in parameters of interest when

freeing misspecified equality restrictions, as well as its robustness to misspecification

in the alternative model. Sections 4 and 5 demonstrate the use of the EPC-interest

on two latent variable analyses from the literature where comparisons across groups

were of interest (see the digital appendix for R code and data). The final section sum-

marizes the findings and discusses some limitations and future work on the use of the

EPC-interest for evaluating invariance hypotheses.
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2. ASSESSING THE EFFECT OF MISSPECIFIED INVARIANCE

RESTRICTIONS ON SEM PARAMETERS OF INTEREST

A structural equation model is any model Σ(θ),µ(θ) that imposes a structure on

the population covariance matrix Σ and mean vector µ of observed variables y as

a function of a vector θ of unknown model parameters (Bollen, 1989). A common

parameterization of SEM is the LISREL “all-y” model for group g,

yg = νg + Λgηg + εg, (1)

ηg = αg + Bgηg + ζg, (2)

where ηg is a vector of latent variables, and εg and ζg are observed and latent variable

residuals. The “measurement model” consists of the first equation involving as pa-

rameters the vector of intercepts νg, the loading matrix Λg, and the residual variance

matrix Var(yg|ηg) = Var(εg) := Ψg. The second equation is the “structural” part of

the model with latent intercepts (or means) αg, latent variable regression coefficients

Bg, and the (residual) variance matrix Var(ζg) := Φg as group-specific parameters.

Assuming η, ε, and ζ are mutually uncorrelated, this model produces as moment

structure implications

Σ(θ) = Λ(I−B)−1Φ(I−B)−TΛ′ + Ψ, (3)

for the covariances and

µ(θ) = ν + Λ(I−B)−1α (4)

for the means, where for notational convenience the group-specific parameters have

been stacked to obtain the block-diagonal covariance matrix over all groups.
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Estimation of the parameters a = [ν ′,α′, (vec Λ)′, (vech Φ)′, (vec B)′, (vech Ψ)′]′

then proceeds by minimizing a nonnegative fitting function F (S,m; Σ(θ),µ(θ)) so

that θ̂ = arg minθF (S,m; Σ(θ),µ(θ)) (e.g. Satorra, 1989). A common choice of fit-

ting function is that corresponding to maximum likelihood estimation under the as-

sumption that y is independently and identically distributed as multivariate normal

(Bollen, 1989). Under the model, however, such distributional assumptions do not

affect consistency of the parameter estimates (Satorra, 1989).

Models freely estimating all parameters in a are generally not identifiable. There-

fore, restrictions a = a(θ) are imposed, such as setting certain loadings to zero, re-

stricting the residual variance matrices to be diagonal, or allowing only recursive latent

variable regression coefficients. Any subset of a may play the role of the parameter

interest; attention may focus on differences in the latent means αg over groups g,

for instance, or on differences in latent variable regressions Bg. Although there is in

principle no restriction on what may defined as a parameter of interest, the structural

parameters are more usually of direct interest than the measurement parameters.

To identify differences over groups in structural parameters pertaining to latent

variables, however, it is necessary to impose cross-group equality restrictions on the

measurement parameters: the measurement invariance restrictions. Even when no

explicit restrictions are made, but, for instance, one loading is set to unity in each

group to identify regression coefficients in each group, the assumption of invariance of

such reference loadings is implicit (Hancock, Stapleton and Arnold-Berkovits, 2009).

For identifiability of the comparison of interest, then, it is necessary to include in the

restrictions a = a0(θ) equality restrictions on the measurement model. In general,

equality of loadings Λg′ = Λg∀g 6= g′ (“metric invariance”) is required for identifi-

cation of parameters pertaining to the covariance matrix of the latent variables such

as Bg, while for identification of latent mean differences in αg, equality of both load-
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ings and intercepts Λg′ = Λg;νg′ = νg∀g 6= g′ (“scalar invariance”) is required. Of

course, such restrictions may be misspecified, and the misspecifications may cause

bias in the parameters of interest (Yuan, Marshall and Bentler, 2003; Millsap, 2007;

Kolenikov, 2009). It is not necessary that the full measurement parameter vectors be

equal however: partial invariance of at least two indicators per latent concept suffices

for identification of the parameters of interest (Byrne, Shavelson and Muthén, 1989).

This suggests that after estimation of a fully invariant model with restrictions a0(θ), a

partially invariant alternative model aa(θ) can be considered which frees one equality

restriction. Alternatively, a0(θ) may itself be a partially invariant model, assuming

that it and the alternative model remain identifiable.

The EPC-interest of an equality-constrained measurement parameter with respect

to a parameter of interest in the a0 model is defined as a consistent estimate of the

expected change in the parameter of interest if the equality constraint were freed in

the aa model. Let the parameters of interest π be defined as π = Pθ. Typically P

is a selection matrix, but P may also produce a linear combination or contrast of free

model parameters, for example the cross-group differences in regression coefficients.

Let Aa = ∂aa/∂θ
′. Then Aa is a logical (0/1) matrix corresponding to the alternative

model including the possible misspecification under consideration as though it were a

free parameter. As shown in the appendix,

EPC-interest := π − π̂ ≈ P(A′aJ(θ̂)Aa)
−1g(θ̂)Aa. (5)

where g(θ̂) and J(θ̂) are consistent estimates of respectively the gradient and the

hessian of the fitting function with respect to the unrestricted parameter vector (a),

evaluated at the sample parameter estimates under the a0 model (Satorra, 1989; Bentler

and Chou, 1992). For the LISREL all-y model, Neudecker and Satorra (1991) provided
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g and J as a function of the parameter estimates: the EPC-interest depends only on

the parameter estimates from the restricted a0 model.

A key assumption in deriving the EPC-interest is that the hessian J is approxi-

mately constant between the null and alternative model population parameter values

(Satorra, 1989). This implies that the alternative model aa should not itself be strongly

misspecified. Some degree of misspecification in the alternative model is allowed for; in

this case the EPC-interest becomes an approximation to the shift in the parameter of

interest if the equality restriction were freed. The following section will study the influ-

ence of alternative model misspecification on the EPC-interest statistic in an example,

and suggests that the approximation may be rather robust to this assumption.

The EPC-interest (equation 5) allows the researcher to fit the invariance model

and obtain consistent estimates of the effect of various restrictions on the parameters

of interest. Thus, it is similar to the more familiar EPC (Saris, Satorra and Sörbom,

1987) in the sense that it gives an estimated shift in a parameter when freeing a

restriction, the difference being that this shift is not in the restricted parameter itself

but in the parameter(s) of interest1. To avoid confusion with the EPC, we will denote

that measure as the “EPC-self” and its standardized version (Kaplan, 1989; Chou and

Bentler, 1993) as the “SEPC-self”. Since partial invariance testing is done precisely

because differences in measurement parameters may affect the parameters of interest,

the EPC-interest should prove useful when evaluating whether particular equality

restrictions should be maintained or not.

1If the parameter of interest were defined to be the restricted parameter itself, EPC-interest will
equal EPC-self.
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3. ACCURACY OF THE EPC-interest: MONTE CARLO SIMULATION AND

POPULATION ROBUSTNESS

A small simulation study evaluates the performance of the EPC-interest in small sam-

ples as an estimate of the shift in a parameter of interest when freeing a measurement

parameter. In this simulation, a two-group, one-factor model with three indicators

was formulated. The parameter of interest was taken to be the latent mean difference

between the two groups, which was set to 0.2. The unstandardized factor loadings

were chosen to equal 1 for all indicators and in both groups, the latent variables were

chosen to have variance equal to 1 in both groups, and the error variances of the three

indicators were set to 0.5. Two indicators’ intercepts were set to zero in both groups,

but the third indicator’s intercept violated scalar invariance.

The cross-group difference in the intercept (misspecification) was varied across sim-

ulation conditions (∆τ1 ∈ {0.1, 0.3, 0.8}). The conditions also varied the number of

observations for each of the two groups (ng ∈ {50, 100, 500}). For each of the nine

resulting conditions, 200 samples were drawn from multivariate normal distributions

based on the population model. In each sample, the misspecified full scalar invariance

model was fit to the data. The EPC-self was then calculated for the misspecified pa-

rameter, as well as the EPC-interest of the misspecified parameter with respect to the

latent mean difference. Table 1 shows the results of this simulation for each of the nine

conditions.

Table 1 shows that the bias in the latent mean difference, ∆κ̂, is affected differently

in the different conditions. As one would expect, the bias is larger in conditions with

larger misspecifications. The EPC-interest statistic is meant to estimate this bias as

a result of the misspecification in the intercept τ1. The average over repeated samples

of EPC-interest is indeed very close to the actual bias in the latent mean difference.
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Table 1: Monte Carlo simulation results show that the EPC-interest approximates the
true latent mean bias well, even in small samples.

Average over 200 replications
∆τ1 ng EPC-self ∆κ̂ ∆κ̂ bias EPC-interest EPC-interest bias
0.1 50 0.064 0.240 -0.040 -0.034 0.005
0.3 50 0.213 0.313 -0.113 -0.113 -0.001
0.8 50 0.657 0.505 -0.305 -0.401 -0.096
0.1 100 0.058 0.231 -0.031 -0.031 0.000
0.3 100 0.203 0.323 -0.123 -0.109 0.014
0.8 100 0.619 0.492 -0.292 -0.370 -0.077
0.1 500 0.063 0.233 -0.033 -0.033 0.000
0.3 500 0.208 0.307 -0.107 -0.112 -0.005
0.8 500 0.598 0.501 -0.301 -0.349 -0.048

This means that the EPC-interest gives a close estimate of the shift in latent mean

difference estimate if the misspecified τ1 parameter were freed. The estimate is close

to the true bias even for the small sample size condition in which each group contains

only 50 observations. The EPC-self appears to be uniformly underestimated.

The Monte Carlo simulation shows that the finite-sample estimate of EPC-interest

is close to the population shift in the parameter of interest, even for small samples.

However, the quality of the population approximation is affected by the degree of mis-

specification in the alternative model. If the alternative model is strongly misspecified,

the EPC-interest becomes only an approximation to the actual population shift in the

parameter of interest. Asymptotic robustness to the effect of misspecification in the

alternative model can be studied by first calculating the population implied covariance

matrix and then adding some amount of random variation to these population covari-

ances to reflect the effect of misspecification. The scalar invariance model is then fitted

to this shifted population covariance matrix and mean vector, and the EPC-interest

calculated on it.

Table 2 shows the asymptotic robustness of the EPC-interest approximation to

misspecification in the alternative model for increasing degrees of misspecification.
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Table 2: Asymptotic robustness of the EPC-interest to misspecification of the alter-
native model. Shown is the difference between the EPC-interest and the true bias it
is meant to approximate.

Misspecification Mean Std. dev. First quartile Median Third quartile
Unif(-0.05, 0.05) -0.005 0.004 -0.008 -0.005 -0.002
Unif(-0.10, 0.10) -0.006 0.008 -0.012 -0.006 -0.001
Unif(-0.20, 0.20) -0.006 0.020 -0.019 -0.007 0.005

Again the two-group, single factor three indicator model was used, with a difference in

one of the intercepts of 0.3 and a true latent mean difference of 0.2. The population

covariance matrix resulting from this model was then perturbed 200 times with uniform

random numbers. The minimum and maximum of the perturbations increased in

three conditions from 0.05 to 0.20. The scalar invariance model was fitted to each

of the resulting perturbed matrices, and the EPC-interest calculated as well as the

“estimate” of the latent mean difference of interest. If the EPC-interest is robust to

misspecification of the alternative model, it should be close to the bias in the latent

mean difference resulting from fitting the scalar invariance model to the perturbed

matrix.

Table 2 shows the mean, standard deviation, and quartiles over the 200 perturba-

tions of the difference between EPC-interest and the bias in the latent mean difference.

It can be seen from the increase in standard deviation that this difference can increase

with the amount of misspecification in the alternative model. However, the error in the

approximation of the EPC-interest is in general small compared to the latent mean

difference bias, which ranged between -0.30 and +0.05. This shows that even though

the quality of the approximation in principle depends on the closeness of the alternative

model to the true model, at least in the example studied this effect is minimal and the

EPC-interest appears asymptotically robust to this assumption.
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Table 3: Intercept estimates and standardized loadings from the scalar invariance
confirmatory factor analysis. Chi-square: 104, df = 70 (p = 0.005), CFI = 0.997,
RMSEA = 0.050 (p = 0.468), SRMR = 0.010.

Indicator Intercept (s.e.) Loading (s.e.)
Political rights

Electoral Process (A) 7.7 (0.303) 4.14 (0.218)
Political Pluralism (B) 10.2 (0.369) 5.06 (0.264)
Functioning of Government (C) 6.6 (0.251) 3.40 (0.182)

Civil liberties
Freedom of Expression (D) 11.6 (0.307) 4.21 (0.220)
Associational Rights (E) 8.0 (0.267) 3.67 (0.192)
Rule of Law (F) 8.7 (0.320) 4.30 (0.233)
Personal Autonomy (G) 9.8 (0.267) 3.57 (0.196)

4. EXAMPLE 1: MEAN LEVELS OF DEMOCRACY FACTORS

Armstrong (2011) presented a confirmatory factor analysis of seven indicators of the

“level of democracy” obtained from Freedom House. Values for these seven indicators

were observed for 193 countries in four subsequent years (2006–2009). Based on sub-

stantive decisions made by Freedom House, Armstrong (2011) estimated a model with

two separate factors; a maximum-likelihood analysis of this model is shown in Table 3.

The authors allowed for differences over time in the loadings and intercepts. If

intercepts and loadings are not equal over time, latent mean differences over time

would not be identifiable (Steenkamp and Baumgartner, 1998). Therefore invariance

testing is performed by estimating a model constraining both intercepts and loadings to

be equal over time: the so-called “scalar invariance” model. Measurement invariance

testing then consists of comparing the scalar invariance model fit with the fit for a

model in which intercepts are allowed to vary over time, but loadings are constrained

to be equal (“metric invariance”), and the model in which both loadings and intercepts

are freed. None of the chi-square difference tests between these models are statistically

significant (∆χ2 = 6.21, df = 30), differences in CFI and RMSEA are below the cutoffs
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Figure 1: Change in “level of democracy” over time based on scalar invariance model
of Freedom House data from 193 countries using the year as grouping variable. Latent
means of factors Civil Liberties and Political Rights with two standard error-intervals.
The dotted reference line indicates no average change relative to 2006.

recommended by Chen (2007), and the overall model fit, shown in Table 3, would be

judged adequate.

The differences over time in the latent means of Political Rights and Civil Liberties

may be of interest. These changes are plotted in Figure 1 based on the scalar invariance

model. In Figure 1, the year 2006 is taken as the reference group by setting its estimate

to zero. Figure 1 shows that, assuming measurement invariance over time, no changes

in either of the factors are observed in this period. The EPC-interest can now be

applied to assess the sensitivity of these changes to the scalar invariance assumption.

All the |EPC-interest| < 0.008. This means that none of the estimates of change in the

latent mean differences over time would change by more than 0.008 in absolute value if

a scalar invariance restriction on loadings or intercepts were freed. The EPC-interest

therefore yields much the same conclusion as the measurement invariance tests. It also

provides a reasoning behind selecting the scalar invariance model: under the scalar

invariance model, the parameters plotted in Figure 1 are identifiable and any effects of

misspecification in the scalar invariance restrictions is too slight to substantially change

Figure 1.

Another analysis of interest to Armstrong (2011) was the comparison of democracy

14



CivilLiberties PoliticalRights

●

●

●

●

●

●

●

●

●

●

●

●

−3

−2

−1

0

1

Not Free Partly Free Free Not Free Partly Free Free
Freedom of the press

La
te

nt
 m

ea
n 

es
tim

at
e

Figure 2: Latent means of Civil Liberties and Political Rights factors by level of freedom
of the press based on the scalar invariance model. The dotted reference line indicates
no difference relative to the reference “not free” group.

levels across countries with different levels of press freedom (low, middle, high). In this

case the relevant grouping variable is not the year, but the press freedom variable. The

same logic applies to this comparison as to the over-time comparison: measurement

parameters (intercepts and loadings) should be the same for countries with low, middle,

and high amounts of press freedom if these groups are to be comparable. Contrary to

the across-time invariance test, however, imposing scalar invariance restrictions leads to

a significantly worse model fit in terms of chi-square (∆χ2 = 747, df = 21). The CFI’s

for the free, metric invariance, and scalar invariance models are 0.900, 0.848, and 0.682

respectively, while the corresponding RMSEA’s are 0.232, 0.251, 0.322 respectively.

This indicates that the scalar and metric invariance restrictions fit badly, suggesting

that, strictly speaking, the regression of the Civil Liberties and Political Rights scores

on Freedom of the Press is not valid, since the comparison over press freedom groups

is possibly confounded with measurement differences. Figure 2 plots the latent mean

estimates ignoring the lack of model fit of the scalar invariance model which allows for

identification of these differences.

Invariance testing has indicated that Figure 2 may not provide a valid comparison,

because it is based on a misspecified measurement invariance model. The EPC-interest
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Table 4: EPC-interest of equality-constrained parameters with respect to latent mean
differences shown in Figure 2.

EPC-interest when freeing...
Mean estimate of... Group F~1 in group “Free” D~1 in group “Partly free”
PoliticalRights Free -0.247 0.064
CivilLiberties Free 0.021 0.095
PoliticalRights Partly free -1.125 -1.037
CivilLiberties Partly free -0.681 -0.561

allows us to investigate whether these misspecifications are capable of changing the sub-

stantive conclusion of interest shown in Figure 2, namely that there appears to be a

nonlinear relationship between freedom of the press and the level of democracy. Fig-

ure 2 shows that an EPC-interest in the “partly free” group of at least 2, and an

EPC-interest in the “free” group of at least 1 in absolute value would be required to

change the substantive conclusion2. Table 4 shows both columns of EPC-interest values

that involve a EPC-interest of at least 1 in absolute value. Although the EPC-interest

values are much larger than those found for the scalar invariance model with respect

to time, none of the EPC-interest values are large enough to change the substan-

tive conclusions of interest. In spite of the obvious model misspecification, therefore,

the comparison between groups representing different levels of press freedom does not

appear to be threatened by differences in measurement parameters.

5. EXAMPLE 2: REGRESSION COEFFICIENTS IN 19 COUNTRIES

While the comparison of latent means requires scalar invariance, the cross-group com-

parison of regression coefficients among latent variables calls for metric invariance (e.g.

Steenkamp and Baumgartner, 1998). A study by Davidov et al. (2008) on the ef-

fect of human values on attitudes toward immigration illustrates the application of

2Note that this requirement is very similar to the bounds derived by Imai and Yamamoto (2010).
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the EPC-interest to this more complex situation. The authors compare 19 Euro-

pean countries on four regression coefficients between latent variables measured by 17

items. The effect of 19 × 17 = 323 partial metric invariance restrictions’ potential

effects on 19 × 4 = 76 country-specific regression coefficients needs to be assessed:

323 × 76 = 24, 548 EPC-interest statistics. From this apparently daunting task, the

EPC-interest applied to this example produces a surprisingly simple picture: it turns

out to be inconsequentially small in all but four cases.

Figure 3 reproduces Davidov et al. (2008)’s model along with the metric invari-

ance model’s cross-country average structural regression coefficients. Interest focuses

on the structural regression coefficients representing the effect of the two value di-

mensions “Self-transcendence” and “Conservation” advanced by Schwartz and Bilsky

(1987) on two different dimensions of attitudes toward immigration, “Allow” and “No

conditions”. In this parametrization of the metric invariance model, the first country’s

latent variables have been standardized and the other countries’ latent variable vari-

ances allowed to vary to take heteroskedasticity into account. This parametrization is

equivalent to the more common practice of fixing one loading per latent variable to

unity in each country and facilitates the interpretation and comparison of the regression

coefficients over countries.

Data were obtained from the European Social Survey 2002, a high quality cross-

national probability survey (Jowell et al., 2007). Each latent variable is measured with

multiple observed indicators. Davidov et al. (2008) compared 19 countries on these

regression coefficients: Austria (n =2,257), Belgium (1,899), Czech Republic (1,360),

Denmark (1,506), Finland (2,000), France (1,503), Germany (2,919), Great Britain

(2,052), Greece (2,566), Hungary (1,685), Ireland (2,046), Netherlands (2,364), Nor-

way (2,036), Poland (2,110), Portugal (1,510), Slovenia (1,519), Spain (1,729), Sweden

(1,999), and Switzerland (2,037). For the original data, precise wording of the ques-
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Figure 3: Structural equation model of relationships of interest between four latent
variables. The regression coefficient estimates shown are averages over all 19 countries
under the full metric invariance model (see Figure 4 for country estimates).
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Table 5: Left: descriptive statistics for the observed variables. Overall means over
countries, within-country standard deviation, and between-country standard deviation.
Right: loading estimates in the full metric invariance model.

Overall
mean

Within-
country
sd.

Between-
country
sd.

SelfTrans
1.

Conserv
2.

Allow
3.

NoCond
4.

1. ipeqopt 2.07 (1.04) (0.18) 0.648
2. ipudrst 2.41 (1.05) (0.18) 0.711
3. impenv 2.13 (0.99) (0.19) 0.697
4. iphlppl 2.31 (0.99) (0.16) 0.734
5. iplylfr 1.97 (0.89) (0.19) 0.647

6. ipmodst 2.83 (1.24) (0.42) 0.677
7. imptrad 2.76 (1.32) (0.35) 0.768
8. ipfrule 3.14 (1.34) (0.37) 0.847
9. ipbhprp 2.70 (1.23) (0.31) 0.920

10. impsafe 2.37 (1.18) (0.36) 0.801
11. ipstrgv 2.43 (1.19) (0.37) 0.838

12. imdfetn 2.54 (0.78) (0.27) 0.589
13. eimpcnt 2.45 (0.76) (0.28) 0.612
14. imrcntr 2.48 (0.81) (0.21) 0.517
15. impcntr 2.51 (0.77) (0.28) 0.632

16. qfimedu 6.22 (2.64) (0.64) 1.732
17. qfimwsk 6.75 (2.65) (0.78) 2.170

tions, and further information on data collection procedures, we refer to the ESS web-

site3. The left-hand side of Table 5 presents descriptive statistics for the 17 observed

variables. The within-country and between-country standard deviations call attention

to the considerable between-country variation in the means, which could reflect sub-

stantive differences between the 19 countries, but could also originate in cross-country

loading (or intercept) differences.

Following standard practice, the original authors fit the full metric invariance model

to the ESS data: a multiple group structural equation model in which the loadings in

3http://ess.nsd.uib.no/ess/round1/

19



Figure 4: Estimates ±2 s.e. for the four regression coefficients between latent variables
of interest under the metric invariance model in 19 countries.

Figure 3 are constrained to be equal across the 19 countries, while the structural regres-

sion coefficients and other parameters are allowed to vary. The right-hand side of Table

5 gives the resulting estimates of the loadings (under the variance parameterization).

Parameter estimates of interest for the 19 countries are shown in Figure 4.

Davidov et al. (2008, 589) test for (partial) metric equivalence by examining overall

fit measures as well as MI and SEPC-self. They decide that “the overall fit measures

(CFI = 0.95, NFI = 0.94, RMSEA = 0.01, Pclose = 1.0) suggest that [the full metric

invariance model] is acceptable. However, modification indices pointed to misspecifi-

cations in the model. Therefore, in model 2 we (...) had to relax the measurement

invariance constraints for some items.” Based on the MI and (S)EPC-self, the au-

thor’s final model frees four out of the possible 323 loading equalities in three different
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Table 6: EPC-interest statistics of at least 0.1 in absolute value with respect to the
latent variable regression coefficients. For reference, the standardized expected param-
eter change (SEPC-self) is also given.

Loading ”Conditions → qfimwsk” in...
Slovenia France Hungary Ireland

EPC-interest with respect to:
Conditions → SelfTranscendence -0.073 -0.092 -0.067 0.073
Conditions → Conservation 0.144 0.139 0.123 -0.113

SEPC-self 0.610 0.692 0.759 -0.514

countries, namely ”Conservation → ipmodst” in Portugal, ”Conservation → ipstrgv”

in Ireland, and ”SelfTranscendence → iplylfr” in Portugal and Denmark4.

The EPC-interest statistic provides an alternative way to assess whether a loading

equality restriction is substantively important or not. Saris, Satorra and Van der Veld

(2009) suggested a cutoff of 0.1 in absolute value for correlations and standardized re-

gresssion coefficients. Given the parameterization used, this appears to be a reasonable

criterion for the EPC-interest with respect to regression coefficients as well. Although

there are potentially 76 affected parameters of interest for each of the 323 equality

restrictions, as it happens only the four EPC-interest statistics shown in Table 6 meet

this criterion. The form of the model plays an important role here: equality constraints

on loadings in one country hardly affect structural parameters in another, misspeci-

fied constraints on one dependent latent variables’ loadings hardly affect the regression

coefficients of the other, and latent variables with many indicators are generally less

affected by misspecifications.

In summary, even though the full metric invariance model shows “close fit” in terms

of CFI and RMSEA, this model still contains misspecified equality restrictions on load-

ings that threaten the comparison of the regression coefficients of interest. Freeing these

loadings takes this possibility into account while still allowing for the identification of

4Davidov (2012, personal communication).
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the parameters of interest. The misspecified restrictions on loadings in question were

not detected with the SEPC-self and MI: these measures detected other misspecifica-

tions that were large in the sense of having strongly differing loadings.

6. DISCUSSION AND CONCLUSION

We explored the use of the EPC-interest as a measure of whether misspecifications in

invariance constraints are substantively relevant. The EPC-interest approximates the

change in parameters of interest if the equality-constrained measurement parameters

were freed. The EPC-interest follows more closely the logic that invariance testing

matters because of its consequences for the substantive comparisons of interest. An-

other advantage of the EPC-interest is that its calculation requires only the results

obtained by fitting the invariance model. Although we discussed the EPC-interest in

the context of structural equation modeling, Equation 5 is more general, and easily

extended to other latent variable models - including those for discrete observed and

latent variables (Bartholomew, Knott and Moustaki, 2011).

The EPC-interest is an approximation to the actual change in parameters of inter-

est. A robustness study investigated the influence of alternative model misspecification

on population bias in the EPC-interest, finding that it was generally small. A Monte

Carlo simulation then evaluated the finite sample performance of the EPC-interest.

Estimates of the EPC-interest were close to the population shift in parameters of in-

terest, even under the condition with sample sizes of 50 observations per group and a

strong misspecification in the null model. The EPC-interest statistic therefore appears

to have reasonable asymptotic and finite-sample properties.

Two examples of the use of the EPC-interest in cross-group latent variable appli-

cations from the literature demonstrated its use. The first example analyzed a scalar
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invariance model in which the goal was to compare latent means across groups, while

the second example’s goal of comparing structural regression coefficients over 19 coun-

tries compelled its authors to appraise metric invariance.

The first example compared countries’ levels of democracy across time and lev-

els of press freedom. Applying the EPC-interest to the model with scalar invariance

(both intercept and loading) restrictions across time led to much the same conclu-

sion as drawn by invariance testing procedures as well as the original authors. The

EPC-interest was then applied to scalar invariance restrictions across levels of press

freedom. Here measurement invariance testing indicated measurement inequivalence;

based on the EPC-interest, this lack of invariance does not appear to threaten the

substantive conclusions regarding the relationship between press freedom and levels of

democracy, however.

In the second example, the metric invariance (loading) equalities that are in princi-

ple required for comparison of regression coefficients fit the data according to the “close

fit” measures CFI and RMSEA. In spite of this adequate overall fit, the EPC-interest

indicated for four (out of 323 possible) equality restrictions that freeing these loadings

would substantially change the coefficients in the latent variable regressions of interest.

This is possible because the “closeness” of the fit in measures such as CFI and RMSEA

is not defined in terms of changes in the parameters of interest. These four influential

restrictions were not the largest in terms of SEPC and MI, but, due to the form of

the model and the values of the parameters, did have the largest influence on param-

eters of interest. This example therefore demonstrates that large misspecifications in

invariance restrictions (SEPC) need not correspond to substantively large changes in

parameters of interest. Conversely, smaller changes in loading estimates may produce

substantially relevant changes in the parameters of interest.

R code (R Core Team, 2012) implementing the EPC-interest for the SEM library
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lavaan (Rosseel, 2012) and allowing for reproduction of the examples discussed in this

paper is available online at http://[author’s homepage]/.

A disadvantage of the univariate EPC-interest measure used is that the measure-

ment parameters in latent variable models are often dependent, meaning that the

EPC-interest suffers from similar problems of stepwise model improvement and pos-

sible capitalization on chance as the EPC-self and MI (MacCallum, Roznowski and

Necowitz, 1992). Though this problem is not specific to the EPC-interest, it remains

a concern. A possible extended method is to evaluate the effect of freeing several re-

strictions at a time, i.e., a multivariate version of the EPC-interest. It is not known,

however, to what degree such a statistic continues to perform well both asymptotically

and in finite samples. More work is therefore needed to evaluate the performance of

the EPC-interest, EPC-self, MI statistics, and possibly their multivariate versions for

the particular purpose of partial invariance testing.

Interesting avenues for future study include extensions to Bayesian analysis (Fox

and Glas, 2005; Muthén and Asparouhov, 2012), and to other types of conclusions of in-

terest such as ranking groups; the investigation of configural invariance (cross-loadings

and error covariances); and an investigation of the robustness of the EPC-interest to

misspecification of the alternative model under a wider set of conditions than could be

studied here. These issues fall beyond the scope of this paper.

In the sensitivity analysis approach, partial measurement invariance is no longer a

property of a measurement model, but becomes a property holding only with respect

to a particular analysis of interest. Use of the EPC-interest for measurement invari-

ance evaluation requires more substantive knowledge and input from the researcher.

Whether this is a drawback or an advantage is up for debate: arguably, invariance is

a requirement in comparative research because of its substantive implications, so sub-
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stantive implications should guide decisions on whether or not equality restrictions are

warranted. As demonstrated by the second example, invariance tests do not guarantee

that “closely fitting” but misspecified restrictions are inconsequential for parameters of

interest, nor that “badly fitting” equality restrictions are substantively relevant. The

EPC-interest thus represents a trade-off between higher analysis complexity and a

greater degree of confidence that the groups are comparable for the purposes at hand.
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A. APPENDIX: DERIVATION OF THE EPC-INTEREST

Assume both the restricted and alternative model are identified, i.e. A′aJ(θ̂)Aa and

A′0J(θ̂)A0 are full-rank, and that standard regularity conditions apply (see Satorra,

1989, assumptions 1 through 6* inclusive). By a Taylor expansion at the restricted

solution,

F (S,Σ(θ)) ≈ F̂ + [a0(θ)− a0(θ̂)]′g(θ̂) +
1

2
[a0(θ)− a0(θ̂)]′J(θ̂)[a0(θ)− a0(θ̂)](6)

= F̂ + (θ − θ̂)′g(θ̂)A0 +
1

2
(θ − θ̂)′A′0J(θ̂)A0(θ − θ̂), (7)

because the likelihood depends only on the free parameters. Now, to investigate what

would happen if a set of restrictions in a0 were freed, we find the solution to the
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equation ∂F/∂aa = 0, that is,

g(θ̂)Aa + A′aJ(θ̂)Aa(θ − θ̂) = 0.

Therefore,

θ − θ̂ ≈ −(A′aJ(θ̂)Aa)
−1g(θ̂)Aa, (8)

and, since the parameters of interest are defined as π := Pθ,

EPC-interest := π − π̂ ≈ −P(A′aJ(θ̂)Aa)
−1g(θ̂)Aa. (9)

A test can also be constructed of the null hypothesis that the total change in the

parameter(s) of interest equals zero. From equation 9, under the null hypothesis the

EPC-interest will have variance

avar(EPC-interest) = P(A′aJ(θ̂)Aa)
−1P′

(Satorra, 1989, eq. 26, p. 143). Under the null hypothesis, then, the statistic

Ta := (EPC-interest)′avar(EPC-interest)−1(EPC-interest)

will be distributed as central chi-square with rk(P) degrees of freedom.

As also noted by Yuan, Marshall and Bentler (2003, 253), the Ta statistic is a

generalization of the test developed by Hausman (1978). Indeed, when the hypothesis

of invariance holds together with the likelihood specification, the alternative model

estimates are consistent but inefficient, while the restricted model estimates will be

consistent and most efficient. Lemma 2.1 of Hausman (1978, 1253) will then be directly

applicable to θ̂0 and θ̂a. Thus, the Ta and EPC-interest statistics fall under the general
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principle of sensitivity analysis in econometrics.

The power of the Ta test can also be estimated, as follows from Satorra (1989,

theorem 5.3) and an extension of the argument in Saris, Satorra and Van der Veld (2009,

570-1). Letting the hypothetical vector of minimum differences in the parameters of

interest to be detected equal δ̃, the noncentrality parameter (ncp) then equals

ncp = δ̃′avar(EPC-interest)−1δ̃, (10)

and the power of the Ta test to detect combined differences in the parameters of interest

as large as or larger than δ̃ can be calculated by referring to the noncentral chisquare

distribution:

Pr(χ2(rk(P ), ncp) > cα), (11)

where cα is the critical value of the central chi-square distribution with rk(P ) degrees

of freedom corresponding to a given α. For example, for α = 0.05, ca ≈ 3.84 for a

one-degree of freedom test. This result allows one to investigate whether the procedure

suggested here provides enough power to detect differences in the parameters of interest.

The statistic EPC-interest can also be used to obtain an estimate of the values

the model parameters would take on if the restriction under investigation were freed.

Without fitting the alternative model, the estimate of the parameters of interest under

the alternative model can be approximated by

π̂a = π̂ + EPC-interest

(Bentler and Dijkstra, 1984). These “new” parameter estimates can also be obtained

for the other parameters of the model.
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